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Abstract. It is shown that the steepest-descent and Newton’s methods for unconstrained non-
convex optimization under standard assumptions may both require a number of iterations and func-
tion evaluations arbitrarily close to O(ε−2) to drive the norm of the gradient below ε. This shows that
the upper bound of O(ε−2) evaluations known for the steepest descent is tight and that Newton’s
method may be as slow as the steepest-descent method in the worst case. The improved evaluation
complexity bound of O(ε−3/2) evaluations known for cubically regularized Newton’s methods is also
shown to be tight.
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1. Introduction. We consider the numerical solution of the unconstrained
(possibly nonconvex) optimization problem

(1.1) min
x
f(x),

where we assume that f : Rn → R is twice continuously differentiable and bounded
below. All practical methods for the solution of (1.1) are iterative and generate a
sequence {xk} of iterates approximating a local minimizer of f . A variety of algo-
rithms of this form exist, among which the steepest-descent and Newton’s methods
are preeminent.

At iteration k, the steepest-descent method chooses the new iterate xk+1 by min-
imizing (typically inexactly) f(xk − tgk), for t ≥ 0, where gk = ∇xf(xk). This first-
order method has the merit of simplicity and a theoretical guarantee of convergence
under weak conditions (see Dennis and Schnabel (1983), for instance). The number of
iterations required in the worst case to generate an iterate xk such that ‖gk‖ ≤ ε (for
ε > 0 arbitrarily small) is known to be at most O(ε−2) (see Nesterov (2004), page 29),
but the question of whether this latter bound is tight has remained open. The practical
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behavior of the steepest-descent method may be poor on ill-conditioned problems, and
it is not often used for solving general unconstrained optimization problems.

By contrast, Newton’s method and its variants are popular and effective. At
iteration k, this method (in its simplest and standard form) chooses the next iterate
by minimizing the quadratic model

(1.2) mk(xk + s) = f(xk) + gTk s+
1
2s

THks,

where Hk
def
= ∇xxf(xk) is assumed to be positive definite. This algorithm is known

to converge locally and quadratically to strict local minimizers of the objective func-
tion f , but, in general, convergence from arbitrary starting points cannot be guar-
anteed, in particular, because the Hessian Hk may be singular or indefinite, making
the minimization of the quadratic model (1.2) irrelevant. However, Newton’s method
works surprisingly often without this guarantee and, when it does, is usually remark-
ably effective. We again refer the reader to classics in optimization like Dennis and
Schnabel (1983) and Nocedal and Wright (1999) for a more extensive discussion of
this method. To the best of our knowledge, no worst-case analysis is available for this
standard algorithm applied on possibly nonconvex problems (a complexity analysis
is, however, available for the case where the objective function is convex; see Nesterov
(2004), for instance).

Globally convergent variants of Newton’s method have been known and used for
a long time in the linesearch, trust-region, or filter frameworks, descriptions of which
may be found in Dennis and Schnabel (1983), Conn, Gould, and Toint (2000), and
Gould, Sainvitu, and Toint (2005), respectively. Although theoretically convergent
and effective in practice, the complexity of most of these variants applied on general
nonconvex problems has not yet been investigated. The authors are only aware of the
analysis by Gratton, Sartenaer, and Toint (2008, Corollary 4.10), where a bound on
the complexity of an inexact variant of the trust-region method is shown to be of the
same order as that of steepest descent, and of the analysis by Ueda and Yamashita
(2009), (2010) and Ueda (2009), which essentially proves the same result for a variant
of Newton’s method using Levenberg–Morrison–Marquardt regularization. Interest-
ingly, the result by Gratton, Sartenaer, and Toint (2008) does not assume accurate
minimization of the model mk but only relies on the standard but weaker Cauchy
condition (see Assumption AA.1, page 131, in Conn, Gould, and Toint (2000)).

Another particular globally convergent variant of Newton’s method for the so-
lution of nonconvex unconstrained problems of the form (1.1) is of special interest,
because it is covered by a better worst-case complexity analysis. Independently pro-
posed by Griewank (1981), Weiser, Deuflhard, and Erdmann (2007), and Nesterov
and Polyak (2006) and subsequently adapted in Cartis, Gould, and Toint (2009), this
method uses a cubic regularization of the quadratic model (1.2) in that the new iterate
is found at iteration k by globally minimizing the cubic model

(1.3) mk(xk + s) = f(xk) + gTk s+
1
2s

THks+ 1
3σk‖s‖3,

where σk ≥ 0 is a suitably chosen regularization parameter (the various cited authors
differ in how this choice is made). This method, which we call the adaptive regu-
larization with cubics (ARC) algorithm, has been shown to require at most O(ε−3/2)
iterations to produce an iterate xk such that ‖gk‖ ≤ ε, provided the objective function
is twice continuously differentiable, bounded below, and provided ∇xxf(x) is globally
Lipschitz continuous on each segment [xk, xk+1] of the piecewise linear path defined
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by the iterates. This result, due to Nesterov and Polyak (2006) when the model min-
imization is global and exact and to Cartis, Gould, and Toint (2010a) for the case
where this minimization is only performed locally and approximately, is obviously con-
siderably better than that for the steepest-descent method. We note here that even
better complexity results in the convex case are discussed for ARC by Nesterov (2008)
and Cartis, Gould, and Toint (2010b) and for other regularized Newton’s methods by
Polyak (2009) and Ueda (2009).

But obvious questions remain. For one, whether the steepest-descent method may
actually require O(ε−2) functions evaluations on functions with Lipschitz continuous
gradients is of interest. The first purpose of this paper is to show that this is so. The
lack of complexity analysis for the standard Newton’s method also raises the possibility
that, despite its considerably better performance on problems met in practice, its
worst-case behavior could be as slow as that of steepest descent. A second objective
of this paper is to show that this is the case, even if the objective function is assumed
to be bounded below and twice continuously differentiable with Lipschitz continuous
Hessian on each segment of the piecewise linear path defined by the iterates. This
establishes a clear distinction between Newton’s method and its ARC variant, for
which a substantially more favorable analysis exists. The question then immediately
arises to decide whether this better bound for ARC is actually the best that can be
achieved. The third aim of the paper is to demonstrate that it is indeed the best.

The paper is organized as follows. Section 2 introduces an example for which the
steepest-descent method is as slow as its worst-case analysis suggests. Section 3 then
exploits the technique of section 2 for constructing examples for which slow conver-
gence of Newton’s method can be shown; while section 4 further discusses the impli-
cations of these examples (and the interpretation of worst-case complexity bounds in
general). Section 5 then again exploits the same technique for constructing an example
where the ARC algorithm is as slow as is implied by the aforementioned complexity
analysis. Finally, some conclusions are drawn in section 6.

2. Slow convergence of the steepest-descent method. Consider using the
steepest-descent method for solving (1.1). We would like to construct an example on
which this algorithm converges at a rate which corresponds to its worst case on general
nonconvex objective functions, i.e., such that one has to perform O(ε−2) iterations to
ensure that

(2.1) ‖gk+1‖ ≤ ε.

This property is obviously obtained if the sequence of gradients satisfies the (mono-
tonically decreasing) lower bound

(2.2) ‖gk‖ ≥
(

1

k + 1

) 1
2

for all k ≥ 0. An arbitrarily close approximation can also be considered by requiring
that, for any τ > 0, the steepest-descent method needs O(ε−2+τ ) iterations to achieve
(2.1), which leads to the alternative condition that, for all k ≥ 0,

(2.3) ‖gk‖ ≥
(

1

k + 1

) 1
2−τ

.

Our objective is therefore to construct sequences {xk}, {gk}, {Hk}, and {fk} such that
(2.3) holds and which may be generated by the steepest-descent algorithm together
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with a twice continuously differentiable function f (1)(x) such that

(2.4) fk = f (1)(xk) and gk = ∇xf
(1)(xk)

for all k ≥ 0. In addition, f (1) must be bounded below and Hk must be positive
definite for the algorithm to be well-defined. We also would like f (1) to be as smooth
as possible; we are aiming at

AS.0 f is twice continuously differentiable, bounded below, and has bounded Lips-
chitz continuous gradient,

since these are the standard assumptions under which globalized steepest descent
is provably convergent (see Dennis and Schnabel (1983, Theorem 6.3.3)).

Our example is unidimensional, and we define a sequence of iterates {xk} tending
to infinity by

(2.5) x0 = 0, xk+1 = xk + αk

(
1

k + 1

) 1
2+η

(k > 0)

for some steplength αk > 0 such that, for constant α and α,

(2.6) 0 < α ≤ αk ≤ α < 2,

giving the step

(2.7) sk
def
= xk+1 − xk = αk

(
1

k + 1

) 1
2+η

.

We also set

(2.8) f0 =
1

2
ζ(1 + 2η), fk+1 = fk − αk(1− 1

2αk)

(
1

k + 1

)1+2η

,

(2.9) gk = −
(

1

k + 1

) 1
2+η

, and Hk = 1,

where

(2.10) η = η(τ)
def
=

1

2− τ
− 1

2
=

τ

4− 2τ
> 0

and

ζ(t)
def
=

∞∑
k=1

1

kt
=

∞∑
k=0

(
1

k + 1

)t

is the Riemann ζ function, which is finite for all t > 1 and thus for t = 1 + 2η.
Immediately note that the first part of (2.9) gives (2.3) by construction. In what follow
the choice of αk is arbitrary in the interval [α, α], but we observe that the selected
value of αk can be seen as resulting from a Goldstein–Armijo linesearch enforcing, for
some α, β ∈ (0, 1) with α < β,

f(xk)− f(xk+1) ≥ −αsTk gk = ααk‖gk‖2
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and

f(xk)− f(xk+1) ≤ −βsTk gk = βαk‖gk‖2,
since (2.8) ensures that 2(1− α) < αk < 2(1− β) and thus that (2.6) holds.

We now exhibit a function f (1)(x) which satisfies AS.0 and (2.4)–(2.9) and whose
definition on the nonnegative reals1 is given by

(2.11) f (1)(x) = pk(x − xk) + fk+1 for x ∈ [xk, xk+1] and k ≥ 0,

where pk is a polynomial Hermite interpolant on [0, sk] of the form

(2.12) pk(t)
def
= c0,k + c1,kt+ c2,kt

2 + c3,kt
3 + c4,kt

4 + c5,kt
5

such that

(2.13) pk(0) = αk

(
1− 1

2
αk

)(
1

k + 1

)1+2η

, pk(sk) = 0,

(2.14) p′k(0) = −
(

1

k + 1

) 1
2+η

, p′k(sk) = −
(

1

k + 2

) 1
2+η

.

We also impose that p′′k(0) = p′′k(sk) = 1. These conditions immediately give that

c0,k = αk

(
1− 1

2
αk

)(
1

k + 1

)1+2η

, c1,k = −
(

1

k + 1

) 1
2+η

, and c2,k =
1

2
.

One then verifies that the remaining interpolation conditions may be written in the
form ⎛

⎝ s3k s4k s5k
3s2k 4s3k 5s4k
6sk 12s2k 20s3k

⎞
⎠
⎛
⎝ c3

c4
c5

⎞
⎠ =

⎛
⎜⎝

0

p′k(sk) + (1 − αk)
(

1
k+1

) 1
2+η

0

⎞
⎟⎠ ,

whose solution turns out to be

(2.15)

⎛
⎝ c3,k

c4,k
c5,k

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎝

−4
φk
sk

7
φk
s2k

−3
φk
s3k

⎞
⎟⎟⎟⎟⎟⎠ ,

where

(2.16) φk =
1

αk
(1− αk − ψk) with ψk

def
=

(
k + 1

k + 2

) 1
2+η

.

The definition of ψk implies that |ψk| ∈ (0, 1) for all k ≥ 0. The graph of the resulting
f (1) and its first three derivatives are given on the first 16 intervals and for η = 10−4

and αk = 1 in Figure 2.1.

1It can be easily smoothly extended to the negative reals while maintaining its boundedness and
the bounded nature of its second derivatives.
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Fig. 2.1. The function f(1) (top left) and its derivatives of order one (top right), two (bottom
left), and three (bottom right) on the first 16 intervals.

This figure confirms the properties inherited from the construction of the func-
tion f (1), namely, that it is twice continuously differentiable with bounded second
derivatives. This last observation results from the bound

(2.17)

|p′′(t)| = 2c2,k + 6c3,kt+ 12c4,kt
2 + 20c5,kt

3

≤ 2|c2,k|+ 6|c3,k|sk + 12|c4,k|s2k + 20|c5,k|s3k
≤ 1 + 168|φk|
≤ 1 + 168max[1, α]/α

for all k ≥ 0 and all t ∈ [0, sk], where we used (2.15) and the inequality |φk| ≤ 1.
The gradient of f (1) is therefore Lipschitz continuous, but it is not the case for its
second derivative, as can be seen in Figure 2.1 where one observes a linear increase in
the third-derivative peaks with k. The fact that f (1) is bounded below by zero finally
results from the bound

fk − fk+1 = αk

(
1− 1

2
αk

)(
1

k + 1

)1+2η

≤ 1

2

(
1

k + 1

)1+2η

,

which in turn yields, using (2.8) and the definition of the Riemann ζ function, that

fk+1 ≥ f0 − 1

2

k∑
j=0

(
1

j + 1

)1+2η

≥ 1

2
ζ(1 + 2η)− 1

2
ζ(1 + 2η) = 0



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COMPLEXITY OF METHODS FOR NONCONVEX OPTIMIZATION 2839

for all k ≥ 0; note that, with the choice η = 10−4 used for Figure 2.1, we obtain that
1 + 2η = 1.0002 and f0 = (1/2)ζ(1.0002) ≈ 25000.3.

This example thus implies that, for any τ > 0, the steepest-descent method (with
a Goldstein–Armijo linesearch) may require, for any ε ∈ (0, 1), at least⌊

1

ε2−τ

⌋

iterations for producing an iterate xk such that ‖gk‖ ≤ ε. This bound is arbitrarily
close to the upper bound of O(ε−2), which proves that this latter bound is essentially
sharp.

3. Slow convergence of Newton’s method.

3.1. Bounded second derivatives. Now consider using Newton’s method for
solving (1.1). We now would like to construct an example on which this algorithm
converges at a rate which corresponds to the worst case known for the steepest-descent
method on general nonconvex objective functions, i.e., such that one has to perform
O(ε−2) iterations to ensure (2.1). As above, a suitable condition for achieving this
goal is to require that (2.2) holds for all k ≥ 0, and an arbitrarily close approximation
can be considered by requiring that, for any τ > 0, Newton’s method needs O(ε−2+τ )
iterations to achieve (2.1), leading to the requirement that (2.3) holds for all k ≥ 0.
Our current objective is therefore to construct sequences {xk}, {gk}, {Hk}, and {fk}
such that this latter condition holds and which may now be generated by Newton’s
algorithm together with a twice continuously differentiable function f (2)(x) such that,
for all k ≥ 0,

(3.1) fk = f (2)(xk), gk = ∇xf
(2)(xk), and Hk = ∇xxf

(2)(xk).

In addition, f (2) must be bounded below and Hk must be positive definite for the
algorithm to be well-defined. We also would like f (2) to be as smooth as possible; we
are aiming at

AS.1 f is twice continuously differentiable, bounded below, and has bounded and
Lipschitz continuous second derivatives along each segment [xk, xk+1],

since these are the standard assumptions under which globalized Newton’s method is
provably convergent (see Dennis and Schnabel (1983, Theorem 6.3.3), Fletcher (1987,
Theorem 2.5.1), or Nocedal and Wright (1999, Theorem 3.2)).

Our example is bidimensional and its iterates are tending to infinity. They are
defined, for all k ≥ 0, by

(3.2) x0 = (0, 0)T , xk+1 = xk +

⎛
⎝ (

1
k+1

) 1
2+η

1

⎞
⎠ ,

(3.3) f0 =
1

2
[ζ(1 + 2η) + ζ(2)] , fk+1 = fk − 1

2

[(
1

k + 1

)1+2η

+

(
1

k + 1

)2
]
,

(3.4) gk = −

⎛
⎜⎝
(

1
k+1

) 1
2+η

(
1

k+1

)2
⎞
⎟⎠ , and Hk =

(
1 0

0
(

1
k+1

)2
)
,
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where, as in (2.10), η = τ/(4− 2τ) > 0 and ζ(t) is the Riemann ζ function. The first
part of (3.4) then immediately gives (2.3) by construction, since the norm of that
vector is at least equal to the absolute value of its first component.

We now verify that, provided (3.1) holds, the sequences given by (3.2)–(3.4) may
be generated by Newton’s method. Defining

(3.5) sk
def
= xk+1 − xk =

⎛
⎝ (

1
k+1

) 1
2+η

1

⎞
⎠ def

=

(
μk

1

)

and remembering (1.2), this amounts to verifying that

(3.6) gk +Hksk = 0,

(3.7) Hk is positive definite,

and

(3.8) fk+1 = mk(xk + sk)

for all k ≥ 1. Note that, by definition, μk ∈ (0, 1]. The first two of these conditions
say that the quadratic model (1.2) is globally minimized exactly, while the third
ensures perfect equality between the predicted and achieved decrease in the model
and objective function, respectively. In our case, (3.6) becomes, using (3.5), (3.2), and
(3.4),

gk +Hksk = −

⎛
⎜⎝
(

1
k+1

) 1
2+η

(
1

k+1

)2
⎞
⎟⎠+

(
1 0

0
(

1
k+1

)2
)⎛
⎝ (

1
k+1

) 1
2+η

1

⎞
⎠ = 0,

as desired, while (3.7) also follows from (3.4). Using (3.3) and (3.4), we also obtain
that

mk(xk + sk) = f(xk) + gTk sk +
1

2
sTkHksk

= f(xk)− 1

2

(
1

k + 1

)1+2η

− 1

2

(
1

k + 1

)2

= f(xk+1),

which in turn yields (3.8).
We now have to exhibit a function f (2)(x) which satisfies AS.1 and (3.1)–(3.4).

The above equations suggest a function of the form

f (2)(x) = f (2,1)([x]1) + f (2,2)([x]2),

where [x]i is the ith component of the vector x and where the univariates f (2,1) and
f (2,2) are computed separately. Since our conditions involve, for both functions, fixed
values of the function

(3.9) f1,0 =
1

2
ζ(1 + 2η), f1,k+1 = f1,k − 1

2

(
1

k + 1

)1+2η

,
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(3.10) f2,0 =
1

2
ζ(2), f2,k+1 = f2,k − 1

2

(
1

k + 1

)2

,

and of its first and second derivatives at the endpoints of the interval [xk, xk+1], we
again consider applying polynomial Hermite interpolation on the interval [0, xk+1 −
xk], which we will subsequently translate. Considering f (2,1) first, we note that it has
to satisfy conditions that are identical to those stated for f (1) in section 2 for the case
where αk = 1 for all k. We may then choose

f (2,1)([x]1) = f (1)([x]1)

for all [x]1. Let us now consider f (2,2). Again, we consider a function defined by

f (2,2)([x]2) = qk([x− xk]2) + f2,k+1 for [x]2 ∈ [[xk]2, [xk+1]2
]
and k ≥ 0,

where qk is a polynomial Hermite interpolant on the interval [0, 1] of the form

qk(t)
def
= d0,k + d1,kt+ d2,kt

2 + d3,kt
3 + d4,kt

4 + d5,kt
5

such that

qk(0) =
1

2

(
1

k + 1

)2

, qk(1) = 0,

q′k(0) = −
(

1

k + 1

)2

, q′k(1) = −
(

1

k + 2

)2

,

q′′k (0) =
(

1

k + 1

)2

, and q′′k (1) =
(

1

k + 2

)2

.

These conditions immediately give that

d0,k =
1

2

(
1

k + 1

)2

, d1,k = −
(

1

k + 1

)2

, and d2,k =
1

2

(
1

k + 1

)2

.

Applying the same interpolation technique as above, one verifies that

⎛
⎝ d3,k

d4,k
d5,k

⎞
⎠ =

1

2

⎛
⎜⎜⎜⎜⎜⎝

9
(

1
k+2

)2
−
(

1
k+1

)2
−16

(
1

k+2

)2
+ 2

(
1

k+1

)2
7
(

1
k+2

)2
−
(

1
k+1

)2

⎞
⎟⎟⎟⎟⎟⎠ ,

yielding in turn that

|q′′(t)| = 2d2,k + 6d3,kt+ 12d4,kt
2 + 20d5,kt

3

≤ 2|d2,k|+ 6|d3,k|+ 12|d4,k|+ 20|d5,k|
≤ 1 + 6×5 + 12×9 + 20×4
= 219

for all k ≥ 0 and all t ∈ [0, 1].
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The graph of this function and its first three derivatives are given on the first
16 intervals and for η = 10−4 in Figure 3.1. As for f (2,1) = f (1), this figure confirms
the properties inherited from the construction of the function f(x), namely, that it
is twice continuously differentiable and has uniformly bounded second derivatives. Its
second derivative is now globally Lipschitz continuous, as can be seen in Figure 3.1
where one observes that the third derivative is bounded above in norm for all k. As
in section 2, the fact that f (2) is bounded below by zero results from (3.10) and the
fact that ζ(2) = π2/6.
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Fig. 3.1. The function f(2,2) (top left) and its derivatives of order one (top right), two (bottom
left), and three (bottom right) on the first 16 intervals.

One may also compute and bound the third derivative of f (2) along the step,
which is given in the kth interval by

1
‖sk‖3 [p

′′′
k (t)(sk)

3
1 + q′′′k (t)] < p′′′k (t)(sk)

3
1 + q′′′k (t)

≤ (6c3,k + 24c4,kt+ 60c5,kt
2)μ3

k

+6d3,k + 24d4,kt+ 60d5,kt
2

< 6|c3,k|μk + 24|c4,k|μ2
k + 60|c5,k|μ3

k

+6|d3,k|+ 24|d4,k|+ 60|d5,k|
≤ 6×4 + 24×7+ 60×3 + 6×5 + 24×9 + 60×4
= 858,
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Fig. 3.2. The third derivative of the function f(2)(x) along the path [xo, . . . , x16] (left) and this
path on the level curves of f(2) (right).

where we used the inequalities ‖sk‖ > 1 and t ≤ 1, and hence, because of the mean-
value theorem, f (2)(x) has Lipschitz continuous second derivatives in each segment
of the piecewise linear path ∪∞

k=0[xk, xk+1]. The actual value of the third derivative
on the first segments of this path is shown on the left side of Figure 3.2, and the
path itself is illustrated on the right side, superposed on the level curves of f (2). As a
consequence, f (2)(x) satisfies AS.1, as desired.

This last example shows that Newton’s method takes at least O(ε−2+τ ) iterations
in the worst case. It cannot, however, take more than O(ε−2) iterations, since it can be
included in globalization schemes such as trust regions which on this example would
allow Newton steps to be taken and for which an upper bound of O(ε−2) iterations
is known in the worst case for the same problem class (see Gratton, Sartenaer, and
Toint (2008)). Note this latter bound requires bounded second derivatives, as is also
the case for our last example.

3.2. Unbounded second derivatives. Remarkably, if we are now ready to
allow unbounded Hessians and give up smoothness of the objective function beyond
continuous differentiability, then a very different picture emerges. It is possible in this
case to construct an example where Newton’s method is arbitrarily slow in the sense
that, for any p > 0, it takes precisely ε−p iterations to generate ‖gk+1‖ ≤ ε when
applied to a well-chosen f (3), with a certain x0 and for any ε > 0. Thus we relax our
assumptions to

AS.2 f is twice continuously differentiable and bounded below.

This second (family) of examples is unidimensional and satisfies the conditions

x0 = 0, xk+1 = xk − gk
Hk

def
= xk + sk,

for k ≥ 0, where

gk = −
(

1

k + 1

) 1
p

, Hk = (k + 1)q,
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and

f0 =
1

2
ζ

(
2

p
+ q

)
, fk+1 = fk − 1

2

(
1

k + 1

) 2
p+q

,

where p > 0 and q is chosen to satisfy

(3.11) 1− 1

p
≥ q > 1− 2

p
.

One easily checks that fk −mk(xk + sk) = fk − fk+1 and that the iterates xk tend to
infinity.

We may now construct a twice continuously differentiable univariate function f (3)

from R
n
+ to R such that

fk = f (3)(xk), gk = ∇xf
(3)(xk), and Hk = ∇xxf

(3)(xk)

for all k ≥ 0 by construction on each interval [xk, xk+1],

f (3)(x) = pk(x− xk) + fk+1 for x ∈ [xk, xk+1],

where pk is a polynomial of the type (2.12) such that

pk(0) =
1

2

(
1

k + 1

) 2
p+q

, pk(sk) = 0,

p′k(0) = −
(

1

k + 1

) 1
p

, p′k(sk) = −
(

1

k + 2

) 1
p

,

as well as p′′k(0) = (k+1)q and p′′k(sk) = (k+2)q. Writing the interpolation conditions,
one finds that

c0,k =
1

2

(
1

k + 1

) 2
p+q

, c1,k = −
(

1

k + 1

) 1
p

, c2,k =
1

2
(k + 1)q,

and that the remaining coefficients satisfy⎛
⎝ s3k s4k s5k

3s2k 4s3k 5s4k
6sk 12s2k 20s3k

⎞
⎠
⎛
⎝ c3,k

c4,k
c5,k

⎞
⎠ =

⎛
⎝ 0

p′k(sk)
Δhk

⎞
⎠ ,

where

Δhk
def
= (k + 2)q − (k + 1)q.

This system gives ⎛
⎝ c3,k

c4,k
c5,k

⎞
⎠ =

⎛
⎝ s−1

k ( 1
2Δhk − 4φk)

s−2
k (−Δhk + 7φk)
s−3
k ( 1

2Δhk − 3φk)

⎞
⎠ ,

where now

φk =
p′k(sk)
sk

= −(k + 1)q ·
(
k + 1

k + 2

) 1
p

.
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The resulting function f (3) is bounded below by zero and twice continuously differ-
entiable (and thus satisfies AS.2), with minimum at infinity. Note, however, that its
second derivatives are neither unbounded above nor Lipschitz continuous. The graph
of this function and its first three derivatives on the first 16 intervals are shown in
Figure 3.3.
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Fig. 3.3. The function f(3) (top left) and its derivatives of order one (top right), two (bottom
left), and three (bottom right) on the first 16 intervals.

4. How slow is slow? Having shown in section 3.1 an example where, under
standard assumptions, the performance of Newton’s method is arbitrarily close to the
worst case known for steepest descent, we now wish to comment on the degree of
pessimism of this bound.

Returning to the multidimensional case, let us assume that (2.2) holds for some
sequence of iterates {xk} ⊂ R

n generated by Newton’s method on a twice continuously
differentiable objective function from R

n into R which is also bounded below by a
constant flow and has a uniformly bounded Hessian. Assume also that Hk is positive
definite for all k and that every iteration of this process is successful in the sense that

(4.1) f(xk)− f(xk + sk) ≥ η1[mk(xk)−mk(xk + sk)]

for some constant η1 ∈ (0, 1). Assume finally that the quadratic model (1.2) is mini-
mized accurately enough to guarantee a model reduction at least as large as a fraction
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κ of that obtained at the Cauchy point, which is defined as the solution of the (strictly
convex) problem

min
t≥0

mk(xk − tgk).

It is known (see Conn, Gould, and Toint (2000, section 6.3.2), for instance) that the
solution tCk of this last problem and the associated model reduction satisfy

f(xk)−mk(xk − tCk gk) ≥
‖gk‖4

2gTkHkgk
.

Thus our assumption yields that

(4.2) f(xk)−mk(xk + sk) ≥ κ‖gk‖4
2gTkHkgk

≥ κ‖gk‖2
2‖Hk‖ ≥ κ

2κH
‖gk‖2,

where we used the Cauchy–Schwarz inequality to deduce the penultimate inequality
and where κH is an upper bound on the Hessian norms. Because of (4.1), we obtain
from (2.2) and (4.2) that

(4.3) f(x0)− flow ≥ η1

∞∑
k=0

[f(xk)−mk(xk + sk)] ≥ κη1
2κH

∞∑
k=0

1

k + 1
.

But this last inequality contradicts the divergence of the harmonic series. Hence we
conclude that (2.2) cannot hold for our sequence of iterates. Thus a gradient sequence
satisfying (2.3) is essentially as close to (2.2) as possible if the example is to be valid
for all ε sufficiently small.

We may even pursue the analysis a little further. Let K denote the subset of the
integers such that (2.2) holds. Then (4.3) implies that

∑
k∈K

1

k + 1
< +∞.

We then know from Behforooz (1995) that, in this case,

(4.4) lim
�→∞

| K ∩ N� |
10� − |K ∩N� | = 0,

where N�
def
= {p ∈ N | 0 ≤ p ≤ 10�}. But

| K ∩ (N� \ N�−1) |
10� − 10�−1

≤ 10| K ∩ N� |
9× 10�

≤ 10

9

| K ∩ N� |
10� − |K ∩ N� | ,

and therefore, using (4.4),

lim
�→∞

| K ∩ (N� \ N�−1) |
| N� \ N�−1 | = lim

�→∞
| K ∩ (N� \ N�−1) |

10� − 10�−1
= 0.

Thus, if (k) is defined such that k ∈ N�(k) \ N�(k)−1, we have that limk→∞ (k) = ∞
and therefore that

lim
k→∞

Probk
[ ‖gk‖ ≥ (k + 1)−2

]
= lim

k→∞
Probk[ k + 1 ∈ K ]

= lim
k→∞

Probk[ k + 1 ∈ K ∩ (N�(k) \ N�(k)−1) ]

= 0,
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where Probk[·] is the probability with uniform density on {10�(k)−1 + 1, . . . , 10�(k)}.
As a consequence, the probability that the termination test (2.1) is satisfied for an

arbitrary k in the range [ 10�(
ε
−1/2�)−1 + 1, 10�(
ε

−1/2�) ] tends to one when ε tends to
zero.

How do we interpret these results? What we have shown is that, under the con-
ditions stated before, the statement

there exists θ > 0 such that, for all k arbitrarily large, ||gk|| ≥ θ

(
1

k + 1

)2

is false. This is to say that

for all θ > 0 there exists k arbitrarily large such that ||gk|| < θ

(
1

k + 1

)2

.

In fact, we have proved that the proportion of “good” k’s for which this last inequality
holds (for a given θ) grows asymptotically. But it is important to notice that this last
statement does not contradicts the worst-case bound of O(ε−2) mentioned above,
which is

there exists θ > 0 such that, for all ε > 0 and k ≥ θ

ε2
, ‖gk‖ ≤ ε.

Indeed, if ε is given, there is no guarantee that the particular k such that k = θ(k+1)−2

belongs to the set of “good” k’s. As a consequence, we see that the worst-case analysis
is increasingly pessimistic for ε tending to zero.

We conclude this section by noting that the arguments developed for Newton’s
method also turn out to apply for the steepest-descent method, as it can also be shown
for this case that

f(xk)−mk(xk − tCk gk) ≥ κSD‖gk‖2

for some κSD > 0 depending on the maximal curvature of the objective function (see,
for instance, Conn, Gould, and Toint (2000, Theorem 6.3.3), with Δk sufficiently large,
or Nesterov (2004, relation (1.2.13), page 27)). This inequality then replaces (4.2) in
the above reasoning.

5. Less slow convergence for ARC. Now we consider using the ARC algo-
rithm for solving (1.1), using exact second-order information. As above, we would
like to construct an example on which ARC converges at a rate which corresponds to
its worst-case behavior for general nonconvex objective functions, i.e., such that one
has to perform O(ε−

3
2 ) iterations to ensure (2.1). This goal is clearly achieved by a

gradient sequence such that

‖gk‖ ≥
(

1

k + 1

) 2
3

.

An arbitrarily close approximation is again considered by requiring that, for any
τ > 0, the ARC method needs O(ε−

3
2+τ ) iterations to achieve (2.1), which leads to

the condition that, for all k ≥ 0,

(5.1) ‖gk‖ =

(
1

k + 1

) 2
3−2τ

.
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Our new objective is therefore to construct sequences {xk}, {gk}, {Hk}, {σk}, and
{fk} such that (5.1) holds and which may be generated by the ARC algorithm together
with a function f (4)(x) satisfying AS.1 such that

fk = f (4)(xk), gk = ∇xf
(4)(xk), and Hk = ∇xxf

(4)(xk)

for all k ≥ 0, which is bounded below and whose Hessian ∇xxf
(4)(x) is Lipschitz

continuous with global Lipschitz constant L ≥ 0.
Our example is again unidimensional with iterates tending to infinity. These iter-

ates are defined for all k ≥ 0 by

(5.2) x0 = 0, xk+1 = xk +

(
1

k + 1

) 1
3+η

,

(5.3) f0 =
2

3
ζ(1 + 3η), fk+1 = fk − 2

3

(
1

k + 1

)1+3η

,

(5.4) gk = −
(

1

k + 1

) 2
3+2η

, Hk = 0, and σk = 1,

where now

η = η(τ)
def
=

1

2

(
2

3− 2τ
− 2

3

)
=

2τ

9− 6τ
> 0.

Observe that (5.4) gives (5.1) by construction.
Let us verify that, provided (3.1) holds, the sequences given by (5.2)–(5.4) may

be generated by the ARC algorithm, whose every iteration is very successful2 in the
sense that

(5.5) f (4)(xk)− f (4)(xk + sk) ≥ η2[mk(xk)−mk(xk + sk)]

for some constant η2 ∈ (0, 1). Using (1.3), this amounts to verifying that

(5.6) gk +
(
Hk + σk‖sk‖

)
sk = 0,

(5.7) Hk + σk‖sk‖ is positive semidefinite,

(5.8) σk > 0, σk+1 ≤ σk,

and

(5.9) fk+1 = mk(xk + sk)

2The trust-region literature (see Conn, Gould, and Toint (2000), for instance) usually distin-
guishes between successful and very successful iterations in that the constant η1 for the former (in
(4.1)) is typically chosen quite small (e.g., 10−3), whereas the constant η2 for the latter (in (5.5))
is much closer to one (e.g., 0.9). The trust-region radius is not decreased in the latter case. The
same distinction is made for the ARC method, in which case the regularization parameter σk is not
increased on very successful iterations (see Cartis, Gould, and Toint (2009)).
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for all k ≥ 1. (Note that (5.9) ensures that every iteration is very successful, as re-
quested.) Because the model is unidimensional, the first two of these conditions say
that the cubic model is globally minimized exactly. Observe first that (5.8) immedi-
ately results from (5.4). In our case, (5.6) becomes, using (5.2) and (5.4),

gk +Hksk + σk‖sk‖sk = −
(

1

k + 1

) 2
3+2η

+ 0 +

(
1

k + 1

) 2
3+2η

= 0,

as desired, while (5.7) also follows from (5.2) and (5.4). Using (5.3) and (5.4), we also
obtain that

mk(xk + sk) = fk + gTk sk +
1
2s

T
kHksk + 1

3σk‖sk‖3

= fk − 2
3

(
1

k+1

)1+3η

= fk+1,

which in turn yields (5.9).
As was the case in the previous sections, the only remaining question is to exhibit a

bounded below and twice continuously differentiable function f (4)(x) with a Lipschitz
continuous Hessian (in each segment [xk, xk+1]) satisfying conditions (5.2)–(5.4), and
we define it on the nonnegative reals3 by the recursion

f (4)(x) = pk(x − xk) + fk+1 for x ∈ [xk, xk+1] and k ≥ 0,

where pk is an polynomial Hermite interpolant of the form (2.12) on the interval [0, sk]
such that,

(5.10) pk(0) =
2

3

(
1

k + 1

)1+3η

, pk(sk) = 0,

(5.11)

p′k(0) = −
(

1

k + 1

) 2
3+2η

, p′k(sk) = −
(

1

k + 2

) 2
3+2η

, p′′k(0) = p′′k(sk) = 0.

These conditions immediately give that

c0,k =
2

3

(
1

k + 1

)1+3η

, c1,k = −
(

1

k + 1

) 2
3+2η

, and c2,k = 0.

In this case, the remaining interpolation conditions may be written in the form⎛
⎝ s3k s4k s5k

3s2k 4s3k 5s4k
6sk 12s2k 20s3k

⎞
⎠
⎛
⎝ c3,k

c4,k
c5,k

⎞
⎠ =

⎛
⎝ −pk(0)− p′k(0)sk

p′k(sk)− p′k(0)
0

⎞
⎠ ,

whose solution is now given by

(5.12)

⎛
⎝ c3,k

c4,k
c5,k

⎞
⎠ =

⎛
⎜⎜⎝

10
3 − 4φk

1
sk
[−5 + 7φk]

1
s2
k

[2− 3φk]

⎞
⎟⎟⎠ ,

3Again, it can be easily smoothly extended to the negative reals while maintaining its bounded-
ness and the Lipschitz continuity of its second derivatives.
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Fig. 5.1. The function f(4) (top left) and its derivatives of order one (top right), two (bottom
left), and three (bottom right) on the first 16 intervals.

with

φk
def
=

1

s2k

[(
1

k + 1

)μ

−
(

1

k + 2

)μ]
, where μ

def
=

2

3
+ 2η.

The definition of φk implies that φk ∈ (0, 1) for all k ≥ 0 and, hence, using (5.12),
that

(5.13)

|p′′′(t)| = 6c3,k + 24c4,kt+ 60c5,kt
2

≤ 6c3,k + 24c4,ksk + 60c5,ks
2
k

≤ 6× 10
3 + 24× 13 + 60× 2

= 452

for all k ≥ 0 and all t ∈ [0, sk], and f has Lipschitz continuous second derivatives
along the path of iterates, which is R

+. The desired objective function for our final
counterexample is then well-defined and clearly satisfies AS.1. The graph of this func-
tion and its first three derivatives are given on the first 16 intervals and for η = 10−4

in Figure 5.1. This figure confirms the properties of the function f (4)(x), namely, that
it is twice continuously differentiable and has uniformly bounded third derivative (in
Figure 5.1, the maximum is achieved on each interval by the first point in the interval,
where (5.12) and (5.13) imply that |p′′′(0)| ≤ 20). Thus its second derivative is glob-
ally Lipschitz continuous with constant L ≤ 452 (L = 20 for the function plotted).
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As in our first example, the figure reveals the nonconvexity and monotonically de-
creasing nature of f(x). As in section 2, the fact that f(x) is bounded below by zero
finally results from (5.3) and the definition of the Riemann ζ function; note that, with
the choice of η, 1 + 3η = 1.0003 and f0 = (2/3)ζ(1.0003) ≈ 22222.6.

6. Conclusions. We now summarize the result obtained in this paper. Consid-
ering the steepest method first and assuming Lipschitz continuity of the objective
function’s gradient along the path of iterates, we have, for any τ > 0, exhibited valid
examples for which this algorithm produces a sequence of slowly converging gradients.
This in turn implies that, for any ε ∈ (0, 1), at least,⌊

1

ε2−τ

⌋

iterations and function evaluations are necessary for this algorithm to produce an
iterate xk such that ‖gk‖ ≤ ε. This lower bound is arbitrarily close to the upper
bound of O(ε−2) known for this algorithm. Other examples have also been constructed
showing that the same complexity can be achieved by Newton’s method for twice
continuously differentiable functions whose Hessian is Lipschitz continuous on the path
defined by the iterates, thereby proving that Newton’s method may be as (in)efficient
as the steepest-descent method (in its worst case). The fact that (3.8) and (5.9)
hold ensures that our conclusions are also valid if the standard Newton’s method
is embedded in a trust-region globalization framework (see Conn, Gould, and Toint
(2000) for an extensive coverage of such methods), since it guarantees that every
iteration is very successful in that case (in the sense that (5.5) holds), and that the
initial trust-region may then be chosen large enough to be irrelevant. The conclusions
also apply if a linesearch globalization is used (see Dennis and Schnabel (1983) or
Nocedal andWright (1999)), because the unit step is then acceptable at every iteration
(in our examples), or in the filter context, because the gradient is monotonically
converging to zero. We have also provided an example where Newton’s method requires
exactly 1/ε2 iterations to produce an iterate xk such that ‖gk‖ ≤ ε, but we had to give
up boundedness of second derivatives to obtain this sharper bound. In addition, we
have provided some analysis in an attempt to quantify how pessimistic the obtained
worst-case bounds can be.

We have then extended the methodology to cover the ARC algorithm, which can
be viewed as a regularized version of Newton’s method. For any τ > 0, we have exhib-
ited a valid example for which the ARC algorithm produces a sequence of gradients
satisfying (5.1). This equality yields that, for any ε ∈ (0, 1), at least⌊

1

ε
3
2−τ

⌋

iterations and function evaluations are necessary for this algorithm to produce an
iterate xk such that ‖gk‖ ≤ ε. This lower bound is arbitrarily close to the upper
bound of O(ε−3/2), thereby proving that this last bound is sharp.

We have not been able to show that the steepest-descent method may take at least
O(ε−2) evaluations to achieve a gradient accuracy of ε on functions with Lipschitz
continuous second derivatives, thereby not excluding the (unlikely) possibility that
the steepest-descent method could be better than Newton’s method on sufficiently
smooth functions.

Our result that the ARC method is the best second-order algorithm available
so far (from the worst-case complexity point of view) suggests further research
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directions beyond that of settling the open question mentioned in the previous para-
graph. Is the associated complexity bound in O(ε−3/2) the best that can be achieved
by any second-order method for general nonconvex objective functions? And how best
to characterize the complexity of an unconstrained minimization problem? These in-
teresting issues remain challenging.
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