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Simple sufficient conditions are given for a wide class of discrete methods for
Volterra-type equations to be convergent of order exactly s.

1. Introduction

To compare the solution y e X of an operator equation with the solution yh e Xh

of a corresponding discretization, a linear restriction operator rh:X—*Xh is
introduced (Aubin [1], Noble [5]). The sequence {yh}hej (with J<zU + and
inf / = 0) converges to v if

lkV-/lU->0 as A->0,
where ||»||A denotes a norm on Xh. The convergence is of order at least s if, for all
heJ sufficiently small,

\\rhy-yh\\h^Chs,

for some constant C > 0, independent of h. Convergence will be of order exactly s
if it is of order at least s and if there exists no y >0 such that, for some Cy > 0
independent of h,

\\rhy-yh\\h^Cyh
s+\

The aim of this note is to give sufficient conditions, which are straightforward
to verify, for a class of methods for Volterra-type equations to be convergent of
order exactly s. Here the term 'Volterra-type equations' encompasses initial-value
ordinary differential equations, Volterra integral equations of the first and second
kind, and Volterra integrodifferential equations. The notation and concepts
employed will generalize those of Dixon & McKee [3].

2. The exact order of convergence

First we introduce the discrete space Xh and the class of discrete methods that
will be considered.
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DEFINITION 2.1 Let T and h0 be given, with T/h0 = NoeN, and define

J:={h:h = TIN, NeN,N> No}.

For each heJ, let £2h = {0,. . . ,N). Define

Xh:={xh = (x0,...,xN):x,eRi}

where each Rt (ie Qh) is a real Banach space with norm |#|,. Define the norm
|MUon**by

||x*|U = max{|*, | , :iefi*}.
In the following, ktj and k\"^ (i = 0, . . . , N; j = 0, . . . , i) will denote respec-

tively the components of a discrete Volterra kernel and the nth discrete iterated
Volterra kernel (see Dixon & McKee [3]), and, for \hku\ < 1, the quantity £/;- will
be defined by

, __(ku/(l-hktt) <j<i),
ij l o ( / = «•).

DEFINITION 2.2 A discretization will be said to be expressible in discrete
fundamental form if it can be expressed as an equation of the form

yh=gh + Hh(yh), (2.1)

where gh e Xh is known and Hh :Xh-+Xh satisfies

(\H\yh) - Hh{zh)\)t ^ (Kh \yh - zh\)h (2.2)

for all i e Qh and all yh,zh e Xh, where

tv*I = (Wo, • • •, \yN\N), (Kh | / | ) , = h t kij(\yh\)j (i e o*)
y=o

and the discrete Volterra kernel (fcl7) satisfies, for all heJ sufficiently small, the
bounds 0 =£ hku < 1 for each / e Qh, and the conditions:
(DI) £,y > 0 for 0 =£ j < i« N;
(DII) h Eylo&ij is bounded independently of h for each ie Of1;
(Dili) there exists some ju e W such that the /ith discrete iterated kernel fc^ of

£,, is bounded in i and / independently of h.
This is a generalization of the discrete fundamental form introduced by Dixon

& McKee [3]. It is straightforward to apply the Banach fixed-point theorem to
show that a discretization expressible in discrete fundamental form possesses a
unique solution yH e Xh.

For Volterra-type equations, there is an extensive class of methods expressible
in discrete fundamental form: this is illustrated by Scott [6].

The conditions DI-DIII will be referred to as generalized (zero) stability
conditions. For, if gh in equation (2.1) is perturbed by an amount dgh eXh, then,
by employing Theorem 3.2 of Dixon & McKee [3] (see also Theorem 5.1 of [4]),
it can be shown that the change 6yh in yh satisfies, for all h sufficiently small, the
bound

U, (2.3)
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where Cv > 0 is independent of h. That is, the discrete fundamental form is stable
(see also Baker [2]).

For convergence, a concept of consistency is required.

DEFINITION 2.3 Let v e X be the (unique) solution of the Volterra-type equation
which is to be solved numerically, and assume a linear restriction operator
rh : X-* Xh has been chosen. Consider a discretization which is expressible in the
discrete fundamental form (2.1). The consistency error 6h of the discrete
fundamental form is defined to be

eh:=rhy-gh-Hh{rhy). (2.4)

The discrete fundamental form is consistent (resp. consistent of order s) if

||0*IU-»O as h^O

(resp. \\dh\\h =£Chs, for some C > 0 independent of h).
The discretization will further be said to be optimally consistent of order s if

there exist positive real numbers C,(/t) satisfying (i)

Ci(h)<C

for some C independent of h, for all i e Qh, and (ii)

max {Q(h) :ieQh}^C>0,

for some C independent of h, such that

(2.5)

Note that optimal consistency of order s implies consistency of order s but not
vice versa. Consequently, optimal consistency is the stronger condition and, as
the following theorem shows, it may be used to determine the exact order of
convergence.

THEOREM 2.1 Let y eX be the (unique) solution of the underlying Volterra-type
equation and let rh : X^Xh be a chosen linear restriction operator. Assume that
yh e Xh is defined by a discretization which is expressible in discrete fundamental
form. If the discrete fundamental form satisfies the generalized (zero) stability
conditions, then the discretization is convergent if and only if the discrete
fundamental form is consistent.

Moreover, for heJ sufficiently small, there exist C^,CV > 0, independent of h,
for which

and optimal consistency of order s implies convergence of order exactly s.

Proof. The exact solution y e X of the underlying Volterra-type equation satisfies
the perturbed discrete fundamental form

rhy=gh + dh + Hh(rhy). (2.6)

Therefore, from (2.3) with dgh = dh and 6yh = rhy - yh, it follows, for h
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sufficiently small, that

and consistency of the discrete fundamental form implies convergence.
From (2.6) and (2.1),

dh = rhy-yh-[Hh(rhy)-H\yh)].

Hence, using (2.2), we obtain

{\eh\)i«(\rhy -yh\), + h2 kv(]r*y -yh\),
/=0

(2.7)

This holds for all / e Qh, and thus DII gives

for some C, independent of h. Thus convergence implies consistency of the
discrete fundamental form. Combining (2.7) and (2.8) yields

It remains to prove that optimal consistency of order s implies convergence of
order exactly s. Suppose that the discretization is optimally consistent of order s.
That is,

where max (C,(/i) : i e Qh) ̂  C>0, with C independent of h, and C,(/i)«C,
with C independent of h, for all i e Qh. Thus

and the upper bound in (2.9) implies convergence of order at least 5.
Now suppose that convergence of order s + y, with y > 0, is possible. Then

for some C > 0. The lower bound in (2.9) would then imply

which, for sufficiently small h, contradicts optimal consistency.
Note: it is assumed that the discretization does not give the exact solution to

the Volterra-type equation. If, for a particular equation, the discretization gave
the exact solution, then (2.5) would become

and the two-sided bound (2.9) would be replaced by
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3. Concluding remarks

Theorem 2.1 reduces the task of obtaining the exact order of convergence of a
discretization of a Volterra-type equation to three straightforward steps:

(1) express the discretization in discrete fundamental form;
(2) check that the generalized (zero) stability conditions DI-DIII hold;
(3) find the order of optimal consistency.

Performing step (1) and checking that DI and DII hold present no problems.
Verifying that Dili holds may be harder for Volterra equations with weakly
singular kernels, but, for initial-value ordinary differential equations, Dili holds
whenever the usual zero (Dahlquist) stability condition is satisfied.

Finding the order of optimal consistency may require more work (and
additional continuity conditions) than merely checking that the method is
consistent; the premium for this extra work is the exact order of convergence.
This is particularly useful when, for example, cyclic linear multistep methods are
employed, either to solve ordinary differential equations or to generate quadra-
ture rules for solving Volterra integral equations. In this case, the order of
convergence may succeed the order of the individual members of the cycle; by
determining the order of optimal consistency, the correct order of convergence is
found.
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