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SUMMARY

The antibandwidth maximization problem aims to maximize the minimum distance of entries of a sparse
symmetric matrix from the diagonal and as such may be regarded as the dual of the well-known bandwidth
minimization problem. In this paper, we consider the feasibility of adapting heuristic algorithms for the
bandwidth minimization problem to the antibandwidth maximization problem. In particular, using an
inexpensive level-based heuristic, we obtain an initial ordering that we refine using a hill-climbing algorithm.
This approach performs well on matrices coming from a range of practical problems with an underlying
mesh. Comparisons with existing approaches show that, on this class of problems, our algorithm can be
competitive with recently reported results in terms of quality while being significantly faster and applicable
to much larger problems. Copyright © 2012 John Wiley & Sons, Ltd.
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1. BACKGROUND AND MOTIVATION

Since the 1960s, considerable attention has been paid to the design and development of algorithms
for minimizing the bandwidth of a sparse symmetric matrix A D faij g, that is, finding a labelling
(or ordering) of the rows and columns of A that minimizes the maximum distance b from
the diagonal

b Dmin
i

�
max
j
fji � j j W aij ¤ 0g

�

(see, for example, [1–5]). Until relatively recently, much less attention has focused on the antiband-
width maximization problem, which is the problem of finding a labelling of the rows and columns
of A that maximizes the minimum distance ab from the diagonal

abDmax
i

�
min
j
fji � j j W i ¤ j and aij ¤ 0g

�
.

Many algorithms for reducing the bandwidth of A make extensive use of the adjacency graph
G of A. This is an undirected graph that has a node for each row (or column) of the matrix, and
node i is a neighbour of node j if aij (and by symmetry aj i ) is an entry (nonzero) of A. In terms
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of graphs, the antibandwidth maximization problem is to label the nodes of the graph such that the
length of the shortest edge is maximized (that is, the labelling difference of the end nodes among all
edges is maximized). This problem was introduced by Leung et al. [6] in 1984 in connection with
multiprocessor scheduling problems. It is also referred to as the dual bandwidth problem [7] or the
separation problem [6]. It arises in a number of practical applications. For example, it belongs to
the family of obnoxious facility location problems [8]. Here, the ‘enemy’ graph is represented by n
people, and there is an edge between two people iff they are enemies. The problem is to build each
person a house along a road so that the minimal distance between enemies is maximized. Another
example is the radio frequency assignment problem in which the nodes correspond to transmitters,
and the edges are between interfering transmitters; the objective is to assign the frequencies so that
those for the interfering transmitters are as different as possible.

Like the bandwidth minimization problem, the antibandwidth maximization problem is NP-
complete [6]. In the literature, theoretical results have been presented for some special graphs,
including paths, cycles, rectangular grids, special trees and complete bipartite graphs (see, for
example, [9] and the references therein). Recently, there has been an interest in developing
algorithms to compute solutions that are close to the optimal and that apply to general graphs.
In particular, Hu, Kobourov and Veeramoni [10] have developed an algorithm GSpectral
(Greedy Spectral) that is based on computing the eigenvector corresponding to the largest eigen-
value of the Laplacian associated with the graph and then using a greedy refinement algorithm.
They have applied this to the maximum differential graph colouring problem and reported results
for some small examples. Duarte, Martí, Resende and Silva [11] have proposed an integer linear
programming formulation and several heuristics based on Greedy Randomized Adaptive Search
Procedure (GRASP) with path relinking. They present some high-quality computational results for
general graphs, although the run times for their relatively modest-sized test problems (graphs with
fewer than 9000 nodes) are quite high (typically several minutes for their fastest approach applied
to their largest problems). Thus, we would like to develop alternative algorithms for increasing the
antibandwidth that are significantly faster while retaining good quality. This paper is the first step in
achieving this aim.

An important and well-known example of a bandwidth reduction algorithm is the Cuthill–McKee
algorithm [1] and its many variants, including the Gibbs–Poole–Stockmeyer algorithm [2]. The
Cuthill–McKee algorithm constructs a level-set structure of the graph G and labels the nodes
according to these levels. In this paper, we consider the feasibility of modifying this approach
to obtain a practical algorithm for increasing the antibandwidth of A. We find that on its own,
this is not generally sufficient to yield large antibandwidths but that when combined with a suit-
able refinement algorithm, we are able to compute high-quality orderings for problems that arise
from a range of applications with an underlying mesh. Furthermore, our approach is fast and
thus potentially practical for larger problems that cannot be tackled by either the GSpectral or
GRASP approaches.

The rest of this paper is organized as follows. We begin (Section 2) by briefly recalling the
Cuthill–McKee algorithm and then considering how it might be modified for the antibandwidth
maximization problem. In Section 3, we look at modifying the hill-climbing algorithm of Lim,
Rodrigues and Xiao [3] to improve a given ordering. In Section 4, our proposed algorithms are used
to reorder a set of test matrices, and our results are compared with those of for GSPectral and
GRASP in Section 5. We summarize our findings and discuss future work in Section 6.

2. LEVEL-BASED APPROACH TO ANTIBANDWIDTH PROBLEM

In this section, we first recall the Cuthill–McKee algorithm for bandwidth minimization and then
consider how it may be adapted for the antibandwidth maximization problem.

2.1. The Cuthill–McKee algorithm

Given a starting node s, the Cuthill–McKee algorithm proceeds by relabelling the nodes of the
adjacency graph G by order of increasing distance from s. The algorithm is outlined in Figure 1.

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2014; 21:51–67
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THE ANTIBANDWIDTH MAXIMIZATION PROBLEM 53

Figure 1. Cuthill–McKee ordering algorithm.

Figure 2. Cuthill–McKee labelling of 5 � 5 mesh. Here, the letters indicate the initial ordering, and the
numbers in parentheses are the new labels. A grey scale colouring is used, with the first node given the

lightest shade and the last node the darkest shade.

Here, the degree of a node i is defined as the number of neighbours it has (that is, the number of
nodes j ¤ i for which aij ¤ 0). If G has more than one component, the procedure is repeated from
a starting node in each component.

Ordering the nodes in this way groups them into level sets, that is, nodes at the same distance
from the starting node. Because nodes in level set lk can have neighbours only in level sets lk�1, lk
and lkC1, the reordered matrix is block tridiagonal with blocks corresponding to the level sets. It is
therefore desirable that the level sets be small, which is likely if there are many of them. The level-
set structure rooted at s is denoted by L.s/D fl1, l2, : : : , lhg. Algorithms for finding a good starting
node are usually based on finding a pseudodiameter of G (a pair of nodes that are a maximum
distance apart or nearly so). Much effort has gone into efficiently finding a pseudodiameter;
algorithms are generally based on either using level sets (see, for example, [2] and [12] and the
references therein) or using the Fiedler vector [13]. The (non-unique) optimal bandwidth minimiza-
tion ordering that is obtained by applying the Cuthill–McKee algorithm to a 5�5mesh is illustrated
in Figure 2. Here, the letters indicate the initial ordering, and the numbers in parentheses are the
new labels. A grey scale colouring is used, with the first node given the lightest shade and the last
node the darkest shade. Node ‘a’ is chosen as the starting node (but any of the other corner nodes
could equally well have been chosen).
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2.2. Level-based approach for antibandwidth maximization problem

In their paper, Miller and Pritikin [14] establish tight bounds for the maximum antibandwidth for
various classes of graphs. Further bounds were recently presented by Raspaud et al. [9]. In particular,
Raspaud et al. showed that for a two-dimensional m � k mesh with m > k > 2, the lower bound
on the maximum antibandwidth proved by Miller and Pritikin is precise; that is, the maximum
antibandwidth for such problems is

abD

�
k.m� 1/

2

�
. (2.1)

Miller and Pritikin described how this bound can be achieved. Nodes i and j with coordinates
.p, q/ and .p0, q0/ in the mesh are neighbours if and only if p D p0 and jq � q0j D 1 or q D q0

and jp � p0j D 1. Miller and Pritikin set the origin .0, 0/ to a corner of the mesh and define
X D f.p, q/ W p C q is oddg and Y D f.p, q/ W p C q is eveng. X is ordered lexicographically,
and then Y is ordered lexicographically. This is equivalent to choosing the starting node s to be a
corner of the mesh, constructing the level-set structure L.s/, and then taking the level sets in the
order fl2, l4, : : : , lh, l1, l3, : : : , lh�1g (here, h is assumed to be even) and ordering nodes in each level
set in turn, in natural order.

For a three-dimensional m�m�m mesh, Török and Vrt’o [15] show that

abD
4m3 � 3m2

8
CO.m/. (2.2)

Their algorithm for labelling the nodes to achieve this optimal value (up to the third order term) again
labels the even numbered level sets and then the odd numbered level sets, starting from a corner.

Choosing to start at a corner of the mesh is equivalent to selecting the starting node to be an end
point of a diameter of G. This suggests that for more general problems, we should select s to be an
end point of a pseudodiameter, construct L.s/ and use the level sets to guide the relabelling. In the
Cuthill–McKee algorithm, at each stage the list of candidate nodes for the next label comprises the
unlabelled neighbours of the nodes that have already been labelled. Thus, a node and its neighbours
receive labels that are close to each other, yielding a narrow bandwidth. When attempting to increase
the antibandwidth, we need to do the opposite; that is, if a node has been labelled, avoid labelling its
neighbours for as long as possible. The approach of Miller and Pritikin does exactly that for mesh
problems because none of the nodes in each of the level sets lr has neighbours in the same level set
(the neighbours all belong to the level sets lr�1 and lrC1). For more general problems, we will have
neighbours belonging to the same level set, and so we need to use a strategy to avoid labelling these
neighbours too soon. Our algorithm is outlined in Figure 3.

Figure 3. Level-based antibandwidth ordering algorithm.

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2014; 21:51–67
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Algorithm 2 has a number of sweeps, or passes, through the level-set structure. On each sweep, a
flag is used to indicate whether or not a node that has yet to be labelled is a candidate for labelling
during that sweep. Initially, all flags are set to zero. When a node u is labelled, all the neighbours v
of u that are unlabelled are flagged with the current sweep number; these nodes are not candidates
for labelling until the next sweep. Note that nodes in level set lr can only have neighbours in lr�1, lr
and lrC1. For the mesh problems of Miller and Pritikin, Algorithm 2 reduces to ordering the even-
numbered level sets and then the odd-numbered level sets. The run time complexity of Algorithm 2
is O.dmax � n´/, where dmax is the maximum degree of a node and nz is the number of edges.

The use of Algorithm 2 to order a 5� 5 mesh is illustrated in Figure 4. Again, the letters indicate
the initial ordering, and the numbers in parentheses are the new labels; node ‘a’ is chosen as the
starting node.

The success of Algorithm 2 depends on the choice of the starting node s and the sizes of the
level sets. The rationale for choosing s to be an endpoint of a pseudodiameter is that it will tend
to lead to a long thin level-set structure that is hopefully also well balanced in the sense that (with
the exception of the first and last few levels) the levels each have a similar number of entries. We
want to avoid L.s/ having one level set (or a small number of level sets) lr that is larger than the
other level sets. For suppose a node u 2 lr has a large number of neighbours, most Of which also
belong to lr . Once u has been labelled, if there remains no unlabelled nodes in the other level sets,
the remaining unlabelled nodes in lr will be labelled consecutively. This results in an antibandwidth
of 1, even though with the new labelling

min
j
fji � j j W i ¤ j and aij ¤ 0g

is significantly larger than 1 for all i ¤ n� k for small k. This is illustrated in Section 4.1. To help
assess the quality of our labelling, we define the average antibandwidth as

avD
1

n

X
i

min
j
fji � j j W i ¤ j and aij ¤ 0g. (2.3)

Note that this definition considers upper and lower triangular entries, and thus, maximizing av is
not analogous to the problem of minimizing the profile of A. Recall that the profile is defined to be

profileD
1

n

X
i

max
j
fi � j W j < i and aij ¤ 0g (2.4)

Figure 4. LB labelling of 5 � 5 mesh. Here, the letters indicate the initial ordering, and the numbers in
parentheses are the new labels. A grey scale colouring is used, with the first node given the lightest shade

and the last node the darkest shade.
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and thus involves minimizing the sum of the maximum distance from the diagonal in the lower
triangular part of A only.

3. HILL-CLIMBING REFINEMENT ALGORITHM

The level-based algorithm is a global algorithm. In this section, we look at how we might locally
refine the ordering to improve the antibandwdith. Lim et al. [3] propose a hill-climbing algorithm
for reducing the bandwidth of a symmetric matrix. This local search strategy was adapted for
unsymmetric matrices by Reid and Scott [16]. Here, we propose using hill climbing to increase
the antibandwidth.

The idea behind hill climbing is that at each step a search is made for a non-critical node to swap
with a critical node. For the antibandwidth maximization problem, i is defined to be critical if

min
k
fji � kj W i ¤ k and aik ¤ 0g D ab. (3.1)

If i is critical, we look for a non-critical j such that symmetrically permuting i and j (that is,
swapping rows i and j and columns i and j ) leaves both i and j non-critical. Because for increasing
the antibandwidth we need to move entries away from the diagonal, candidates for swapping must
be sufficiently far apart. In particular, if i is critical and there is some k < i such that i � k D ab,
then if j lies in the range

i � 2 � ab6 j 6 i � 1,

swapping i and j will not lead to an increase in the antibandwidth. Thus, j is only a swap candidate
if it lies outside this range. Similarly, if i is critical and for some k > i, k � i D ab, to be a swap
candidate j must lie outside the range

i C 16 j 6 i C 2 � ab.

If j is a candidate for swapping with i , it is necessary to check the entries in both rows i and j to
see if a swap is possible. A swap is not acceptable if one or more of the following holds:

1. aij ¤ 0 and ji � j j D ab.
2. There exists l such that ail ¤ 0 and jl � j j6 ab.
3. There exists k such that akj ¤ 0 and jk � i j6 ab.

If one of these holds, swapping i and j either decreases the antibandwidth or does not reduce the
number of critical nodes. Each accepted swap while the antibandwidth is ab reduces the number
of critical nodes by one. If the number of critical nodes becomes zero, we restart with antiband-
width abC 1 and repeat the process until no further swaps can be made to reduce the number of
critical nodes. The algorithm is summarized in Figure 5. Note that hill climbing cannot decrease the
antibandwidth but may decrease the average antibandwidth.

Figure 5. Hill-climbing algorithm.

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2014; 21:51–67
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The differences between hill climbing for reducing the bandwidth and for increasing the antiband-
width are (a) the definition of a critical node and (b) the checks that are needed for finding a suitable
swap. For bandwidth reduction, it is sufficient to keep track of the first and last entries in each row.
For increasing the antibandwidth, the checking is more expensive because we must check each of
the entries in rows i and j (unless the entries are in order of increasing column index, but maintain-
ing this ordering after a swap is also expensive). In our implementation, if i is critical, we swap i
with the first suitable j that we find: there is no attempt to find the ‘best’ j (that is, the j that max-
imizes minkfji � kj W i ¤ k and ajk ¤ 0g and minkfjj � kj W j ¤ k and aik ¤ 0g). This is partly
because of the additional cost that locating the best j at each stage incurs but also because finding
the best j does not necessarily lead to the best final antibandwidth. When looking for a swap, we
search the rows in reverse order because we found that this generally yielded better results.

4. NUMERICAL EXPERIMENTS

We start by introducing our test problems. Our first set consists of the 24 two-dimensional meshes
that are used by Duarte et al. [11]. They are constructed as the Cartesian product of two paths, and
optimal solutions for the antibandwidth maximization problem are known by construction (see [9]).
Our second set (Table I) is taken from the University of Florida Sparse Matrix Collection [17] and
comes from the DNVS, HB, INFRO, Schenk-AFE and AG-Monien groups. The order n ranges from
54 to 504 855. For problems with an unsymmetric sparsity structure, we work with AC AT. The
algorithms we propose are primarily designed for problems with underlying meshes, and this has
influenced our choice of test examples, although we emphasize that most of these do not have a
regular rectangular grid structure (see, for example, Figure 6). Some of the smaller problems were
chosen because they appear in the paper by Duarte et al. [11].

The implementations of our algorithms used in this paper are written in Fortran 95; all
experiments are performed on a single core of an Intel Xeon E5620 using the gfortran compiler
(version 4.4.3) with the -O3 option.

Table I. Test problems.

Problem n nz Description

HB/curtis54� 54 291 Stiff ordinary differential equation
HB/dwt_234 234 834 2D structural engineering problem
HB/saylr1 238 1128 14� 17 grid
AG-Monien/grid1 252 952 2D finite-element problem
HB/nos7 330 4617 9� 9� 9 grid
HB/can_445� 445 3809 Finite-element mesh from aircraft design
HB/nos5 468 5172 3D finite-element approximation of building
HB/662_bus� 662 2474 Model of power system network
HB/nos6� 675 3255 Poisson’s equation in L-shaped region
HB/saylr3 1000 3750 3D finite-element problem from reservoir simulation
HB/sherman4� 1104 3786 3D finite-element problem from oil reservoir modelling
AG-Monien/netz4504 1961 5156 2D finite-element problem
HB/lshp2614 2614 17 980 Triangular finite-element mesh on 2D L-shaped region
AG-Monien/grid2 3276 12 864 2D finite-element problem
HB/saylr4 3564 22 316 33� 6� 18 grid
HB/sherman3 5005 20 033 3D finite-element problem from oil reservoir modelling
AG-Monien/ukerbe1 5891 15 704 2D finite-element problem
AG-Monien/big_dual 30 269 89 858 2D finite-element problem
DNVS/ship_001 34 920 3 777 036 3D finite-element model of ship structure
AG-Monien/brack2 62 631 733 118 3D finite-element problem
DNVS/shipsec8 114 919 3 303 533 3D finite-element model of ship structure
DNVS/fcondp2 201 822 11 294 316 3D finite-element model of oil production platform
INPRO/msdoor2 415 863 19 173 163 Structural problem
Schenk_AFE/af_shell1 504 855 17 562 051 Structural problem

n and nz denote the order of the matrix and the number of entries in the matrix, respectively. � indicates the
problem was used in [11].

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2014; 21:51–67
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Figure 6. Finite-element meshes for problems AG-Monien/ukerbe1 (left) and AG-Monien/
big_dual (right).

4.1. Results for the LB algorithm

To verify that the LB algorithm performs as expected for mesh problems, in Table II, we present
results for the two-dimensional mesh problems used by Duarte et al. The starting node s is computed
using the modified GPS algorithm of Reid and Scott [12]. The optimal solution is also given. We
see that, in each case, the LB algorithm computes the optimal maximum antibandwidth or is within
two of the optimal. Note that for each mesh, the reordering time was less than 10�3 s.

Table III reports results for the practical examples described in Table I, and in the upper
part of Figures 7 to 11, the sparsity patterns for some of the problems are plotted both
before and after reordering using the level-based algorithm. With the exception of problems
AG-Monien/grid1 and AG-Monien/grid2 (which have initial maximum antibandwidths of
12 and 197, respectively), the initial maximum antibandwidth is 1, but there is a large range of
values for the initial average antibandwidth. We see that for some of the problems with regular
grids of square or cubic elements (such as HB/saylr1 and HB/nos7), ab and av are increased
substantially by relabelling, and the level-based ordering gives the optimal (or close to optimal)
antibandwidths (from Equation (2.1), the optimal ab for HB/saylr1 is 112, and from (2.2), for
HB/nos7, it is approximately 334). However, for other examples (including the DNVS problems,
HB/dwt_234 and HB/nos5), whereas the average distance between the diagonal and nearest off-
diagonal entry increases (so that av increases), the maximum antibandwidth remains small. For some
of these latter examples, towards the end of the relabelling, we have to give consecutive labels to
nodes that are close to each other in the level-set structure; we can see this in Figure 10 for problem
AG-Monien/big_dual. In the case of HB/lshp2614, the grid comprises triangular elements,
and as is often the case for triangular meshes, a node in level r can have neighbours not only in

Table II. Maximum antibandwidths for two-dimensional mesh problems computed using
the LB algorithm.

Problem LB Optimal Problem LB Optimal

mesh9�9 36 36 mesh130�7 451 452
mesh50�2 49 49 mesh120�8 476 476
mesh34�3 49 50 mesh110�9 490 491
mesh25�4 47 48 mesh100�10 494 495
mesh20�5 47 48 mesh50�20 489 490
mesh10�10 44 45 mesh40�25 486 488
mesh17�6 47 48 mesh60�17 501 502
mesh13�8 47 48 mesh34�30 494 495
mesh15�7 49 49 mesh80�13 513 514
mesh12�9 49 49 mesh70�15 517 518
mesh11�11 55 55 mesh90�12 533 534
mesh12�12 66 66 mesh33�33 528 528

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2014; 21:51–67
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Table III. Results of applying the level-based (LB) algorithm.

Problem ab avi ratioLB

HB/curtis54 4 1.15 10.5
HB/dwt_234 2 2.97 10.6
HB/saylr1 111 1.00 113.2
AG-Monien/grid1 116 82.2 1.45
HB/nos7 330 1.00 340.1
HB/can_445 5 1.19 68.0
HB/nos5 7 2.37 33.8
HB/662_bus 29 45.1 5.44
HB/nos6 329 1.00 330.4
HB/saylr3 1 317.1 1.68
HB/sherman4 257 558.5 1.23
AG-Monien/netz4504 671 18.7 51.7
HB/lshp2614 14 1.00 650.9
AG-Monien/grid2 1626 909.3 1.79
HB/saylr4 1726 1.68 1033.3
HB/sherman3 30 2111.0 1.34
AG-Monien/ukerbe1 2054 57.2 51.7
AG-Monien/big_dual 57 3.54 3400.2
DNVS/ship_001 1 1.00 564.4
AG-Monien/brack2 11 191.8 32.9
DNVS/shipsec8 3 1.00 3886.0
DNVS/fcondp2 5 1.00 8185.0
INPRO/msdoor 1 1.00 14 200.0
Schenk_AFE/af_shell1 488 1.00 27 360.0

The maximum antibandwidth (ab) after the LB algorithm is given. The initial average antiband-
width (avi) is also given together with ratioLB D avLB=avi, where avLB denotes the average
antibandwidth after the LB algorithm.

Figure 7. HB/nos7 (upper left), after reordering using the level-based algorithm (upper right), after hill
climbing applied to the initial ordering (lower left) and to the level-based ordering (lower right).

lr�1 and lrC1 but also in lr , and so we do not have the even and then the odd level set labelling
that is possible for square elements. These results show that using the level-based algorithm is not
sufficient on its own.

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2014; 21:51–67
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Figure 8. HB/sherman4 (upper left), after reordering using the level-based algorithm (upper right), after
hill climbing applied to the initial ordering (lower left) and to the level-based ordering (lower right).

Figure 9. HB/lshp2614 (upper left), after reordering using the level-based algorithm (upper right), after
hill climbing applied to the initial ordering (lower left) and to the level-based ordering (lower right).

We remark that, in the Cuthill–McKee algorithm, the unlabelled neighbours u of v 2 lk�1 are
labelled in order of increasing degree. We tried modifying Algorithm 2 so that the nodes within each
level set were pre-ordered by increasing degree. We found that this did not, in general, improve the
maximum antibandwidth and, for some problems, it gave poorer results.

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2014; 21:51–67
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Figure 10. AG-Monien/big_dual (upper left), after reordering using the level-based algorithm
(upper right), after hill climbing applied to the initial ordering (lower left) and to the level-based ordering

(lower right).

Figure 11. AG-Monien/brack2 (upper left), after reordering using the level-based algorithm
(upper right), after hill climbing applied to the initial ordering (lower left) and to the level-based ordering

(lower right).

4.2. Hill climbing results

In Table IV, we report results for hill climbing applied to the initial ordering and to the level-
based ordering; in the lower part of Figures 8 to 10, the sparsity patterns after hill climbing are
plotted for a subset of our test problems. As already noted, for some of the grid problems (and the

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2014; 21:51–67
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Table IV. The maximum antibandwidth (ab) after hill climbing is applied to the initial ordering (HCi), after
the level-based algorithm (LB) and after hill-climbing follows the level-based algorithm (LB+HC).

ab Average antibandwidth ratios

Problem HCi LB LB+HC ratioHCi ratioLB ratioLB+HC

HB/curtis54 8 4 8 10.5 10.5 10.7
HB/dwt_234 50 2 80 28.5 10.6 33.1
HB/saylr1 45 111 111 68.4 113.2 113.2
AG-Monien/grid1 70 116 116 1.08 1.45 1.45
HB/nos7 105 330 330 159.8 340.1 340.1
HB/can_445 46 5 52 54.0 68.0 68.0
HB/nos5 32 7 49 21.5 33.8 31.8
HB/662_bus 125 29 163 4.64 5.44 5.39
HB/nos6 146 329 329 208.6 330.4 330.4
HB/saylr3 175 1 627 1.62 1.68 2.36
HB/sherman4 168 257 815 1.25 1.23 1.72
AG-Monien/netz4504 344 671 671 33.3 51.7 51.7
HB/lshp2614 343 14 337 460.8 650.9 643.0
AG-Monien/grid2 591 1626 1626 0.99 1.79 1.79
HB/saylr4 469 1726 1726 448.0 1033.3 1034.5
HB/sherman3 693 30 3509 1.27 1.34 1.96
AG-Monien/ukerbe1 1264 2054 2054 35.7 51.7 51.7
AG-Monien/big_dual 5760 57 6645 2663.0 3400.2 3451.0
DNVS/ship_001 244 1 319 347.2 564.4 534.7
AG-Monien/brack2 3480 11 4984 30.0 32.9 46.0
DNVS/shipsec8 1664 3 2246 2337.0 3886.0 3630.0
DNVS/fcondp2 2921 5 4020 4097.0 8185.0 7681.0
INPRO/msdoor 7115 1 8137 9849.0 14 200.0 13 910.0
Schenk_AFE/af_shell1 12 970 488 14 973 16 980.0 27 360.0 25 990.0

The largest maximum antibandwidth is in bold. The ratios of the average antibandwidths to the original average
antibandwidth are also given.

two-dimensional mesh problems), the level-based ordering gives the optimal (or close to optimal)
maximum antibandwidths, and so hill climbing cannot improve them further. Comparing columns 2
and 4 of Table IV, we see that, with the exception of HB/lshp2614, applying HC to the level-
based ordering gives a larger maximum antibandwidth than applying it to the initial ordering. This
illustrates the importance of providing the hill-climbing algorithm with a good initial ordering.
As expected, hill climbing applied to the level-based ordering can decrease the average antiband-
width, although the amount by which it decreases is typically less than 5%. We observe that
the sparsity patterns that we get by applying hill climbing to the initial ordering and the level-
based ordering can be very different, even when the value of ab is not too different (for example,
AG-Monien/big_dual in Figure 10).

The reverse Cuthill–McKee algorithm is commonly used in place of the Cuthill–McKee
algorithm because, although reversing the ordering leaves the bandwidth unchanged, it can reduce
the profile [18]. Reversing the LB ordering leaves the maximum antibandwidth and the average
antibandwidth unchanged. However, if hill climbing is then applied, the final antibandwidth and
average antibandwidth are generally not the same. In our experiments, we found that for the majority
of our test cases, the hill climbing results for the reverse LB ordering were poorer than for the LB
ordering, and so we do not recommend using the reverse ordering.

4.3. Relaxed hill climbing

In the hill-climbing algorithm, i and j are swapped only if the swap leaves both i and j non-
critical. We have investigated whether it can be advantageous to perform a swap even if it results
in j becoming critical. The idea is that if hill climbing has stalled (that is, no further swaps can be
made to reduce the number of critical entries), we allow a swap that leaves the number of critical
entries unchanged in the hope that such a move will lead to later swaps that do reduce the critical
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Table V. A comparison of the maximum antiband-
widths computed using the standard and relaxed

hill-climbing strategies.

Problem Standard Relaxed

HB/can_445 52 56
HB/nos5 49 54
HB/lshp2614 337 351
AG-Monien/brack2 4984 5453

entries. We refer to this variant as relaxed hill climbing. Note that when implementing this variant,
care has to be taken to avoid being into a cycle of swaps that give no gains. Furthermore, the relaxed
strategy is only employed once the standard hill climbing strategy has stalled (using it from the start
led to much poorer results). Results for relaxed hill climbing are given in Table V (the problems for
which the relaxed strategy gave no gain are omitted). We found that the antibandwidth increased for
only a few of our test problems and, in general, the additional cost of performing extra searches and
swaps for relaxed hill climbing was not beneficial.

4.4. The effect of random initial permutations

Finally, we have looked at using the algorithms after applying random symmetric permutations to
the given matrix. For the regular two-dimensional mesh problems that comprise our first test set,
such permutations have little effect: in all our tests, the computed maximum antibandwidth was
again the optimal or within two of the optimal. The results for our more general test set are shown in
Table VI. It is indeed the case that if hill climbing is applied directly, better antibandwidths can often
be found by considering random permutations. This is because a different initial ordering causes a
different sequence of swaps to be performed. We could impose more stringent conditions when a
swap is performed to try and reduce sensitivity. The penalty would be further overheads, and in any

Table VI. Best and worst maximum antibandwidths using the given ordering and nine
random permutations; where only one number is reported, the best and worst are the same.

Problem HCp LB LB+HC

HB/curtis54 [5, 8] [4, 6] [7, 8]
HB/dwt_234 [36, 50] 2 [48, 80]
HB/saylr1 [42, 54] [111, 112] [111, 112]
AG-Monien/grid1 [43, 70] 116 116
HB/nos7 [104, 131] 330 330
HB/can_445 [40, 53] [1, 5] [47, 55]
HB/nos5 [32, 43] [3, 7] [43, 49]
HB/662_bus [87, 125] [4, 29] [126, 163]
HB/nos6 [114, 146] 329 329
HB/saylr3 [154, 193] 1 [625, 627]
HB/sherman4 [158, 187] [257, 258] [815, 817]
AG-Monien/netz4504 [308, 438] 671 671
HB/lshp2614 [315, 359] [11, 16] [337, 423]
AG-Monien/grid2 [537, 662] [1624, 1626] [1624, 1626]
HB/saylr4 [441, 580] [1724, 1726] [1724, 1726]
HB/sherman3 [557, 755] [29, 30] [2016, 3509]
AG-Monien/ukerbe1 [971, 1264] 2054 2054
AG-Monien/big_dual [5267, 6267] [31, 259] [6526, 6645]
DNVS/ship_001 [188, 244] 1 319
AG-Monien/brack2 [3025, 3480] [11, 44] [4984, 5313]
DNVS/shipsec8 [1552, 1664] [1, 3] [2220, 2279]
DNVS/fcondp2 [2703, 3035] [1, 8] [3815, 4074]

HCp is the antibandwidth after hill climbing is applied to the permuted matrix.
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case, the sensitivity can be viewed as advantageous as it allows us, by permuting and rerunning, to
explore the ‘landscape’ of the objective function and hopefully to then be close to finding the global
optimal antibandwidth.

As we would expect, for many problems, the maximum antibandwidth obtained from the level-
based algorithm is not sensitive to the initial ordering. Where there is a difference between the
best and the worst LB maximum antibandwidths it is because the pseudodiameter computed by
the modified GPS algorithm is dependent on the initial ordering, and this in turn effects the level
set structure used by the LB algorithm. Moreover, tie breaking when selecting the nodes within
each level can have an effect. Again, we could impose rules regarding tie breaking that would
reduce sensitivity.

5. COMPARISONS WITH OTHER APPROACHES

So far, we have presented results for our proposed level-based algorithm with hill-climbing refine-
ment (LB+HC). In this section, we consider the GRASP and GSpectral approaches and perform
some comparisons.
GRASP is a well-known metaheuristic that has been successfully applied to many hard combi-

natorial optimization problems. It is an iterative process, in which each GRASP iteration comprises
two phases: construction and local search. The construction phase builds a feasible solution, whose
neighbourhood is explored by the local search. The best solution over all GRASP iterations is
returned as the result. A detailed description of both the construction and local search phases for
the antibandwidth maximization problem is given in Duarte et al. [11].

The GSpectral algorithm of Hu et al. [10] approximates the antibandwidth maximization
problem by finding a permutation such that the sum of the squares of the difference of the row
and column indices is maximized, that is,

max
p2P

X
aij¤0

.p.i/� p.j //2.

Here, P is the set of all possible permutations of f1, 2, : : : ,ng. The vector p is a permutation, and
p.i/ is the i th element of this vector. By relaxing this problem further so that the row and column
labels are real numbers c.i/ with a normalization constraint, this problem becomes

max
c2Rn

X
aij¤0

.c.i/� c.j //2, subject to
nX
kD1

c.k/2 D 1.

It can be shown that c is the eigenvector corresponding to the largest eigenvalue of the Laplacian of
the graph induced by the matrix A. Once c has been computed, a row and column permutation is
obtained by ordering the entries of c. GSpectral then uses a greedy local refinement algorithm
to try and improve the antibandwidth. This refinement proceeds by swapping the labels of pairs of
indices, with a swap allowed if it increases the local antibandwidths, that is, a swap between i and j
is performed provided that minfab.i/, ab.j /g increases, where ab.i/ is the local antibandwidth
given by

ab.i/Dmin
k
fji � kj W i ¤ k and aik ¤ 0g.

Swapping continues until no further swaps can be found. Whereas the eigenvector c of the Laplacian
can be found in near linear time for a sparse graph using power iterations, the simple swapping
procedure can take time quadratic in the dimension of the matrix, making it expensive for large
problems. Note that the interest of Hu et al. was not in large problems, and so the time for the
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refinement step was not a major concern for them. We observe also that it is possible to terminate the
refinement process before it has converged (perhaps after a prescribed time limit has been reached
or once the rate of progress appears to have slowed) but this was not considered by Hu et al.

In Table VII, we compare our computed maximum antibandwidths with those obtained using
GSpectral and GRASP (with default settings); computational times are also given. We note that
for some examples, the reported time for LB+HC is given as zero because the actual time taken is
less than 10�3 s. The results show that, in some cases, our approach is successful in computing
antibandwidths that are competitive with (or are larger than) those from GSpectral and GRASP,
but for other problems, one or both of the latter gives better results. However, for all problems, our
algorithm is faster, significantly so on larger problems, than GSpectral and GRASP. As expected,
the LB+HC algorithm works well on the mesh-based problems but less well on problems from other
application areas (although in all cases, the LB+HC algorithm substantially increases the maximum
antibandwidth compared with the initial ordering).

The level-based algorithm is very fast, but for the large problems, using hill-climbing adds a
significant overhead; indeed, it accounts for almost all of the LB+HC time. For example, for problem
DNVS/fcondp2, the time to run the level-based algorithm is 0.27 s, with the hill-climbing refine-
ment then taking more than 102 s. For even larger problems, hill climbing is expensive, and thus,
it may be necessary to consider terminating early (although we have no way of knowing whether
or not the algorithm is close to converging). Similarly, for the GSpectral algorithm, as antic-
ipated most of the time is in the greedy refinement phase, with the cost of the computation of
the eigenvector being almost negligible by comparison. For problem AG-Monien/big_dual,
the time to compute the eigenvector is 0.14 s, whereas the greedy refinement requires 584 s. As
expected, GRASP is the most expensive approach, and for many of our test problems, the time
limit of 1 h that we imposed for practical reasons was exceeded. Note that the limit was overrun
by HB/dwt_234, one of the smallest of our test examples. GRASP was left running overnight on
problem AG-Monien/grid2 but still did not complete. Thus, it is clear that it does not offer a
method that is practical for any but small problems.

6. CONCLUDING REMARKS AND FUTURE DIRECTIONS

In this paper, we have discussed the antibandwidth maximization problem. We have proposed a
straightforward but new approach to this practical problem that is based on extending the ideas for
the bandwidth minimization problem to the antibandwidth maximization problem. The proposed LB
method is inspired by the well-known Cuthill–McKee algorithm and uses the level sets of a graph.
To try and improve the solution quality, we have employed a local hill-climbing algorithm. Our focus
has been on problems with an underlying mesh, and for these problems, we have demonstrated that
our methods are able to compute high-quality orderings quickly.

A disadvantage of our current approach is that it is a simple two step approach: given an initial
ordering, it computes a level-based ordering and then refines it using hill climbing. Although this
gives good results for many of the test problems that have an underlying mesh, it does not always
work well on more general classes of problems. This suggests that we need to develop further
maximization antibandwidth algorithms for non-mesh problems. In a future study, we plan to
explore other techniques that are designed for bandwidth reduction to see if the ideas involved
can be modified for the antibandwidth maximization problem. In particular, we will look at using a
node-centroid algorithm [3,16] combined with hill climbing and a multilevel approach (see [19] for
a multilevel algorithm for reducing the profile of a symmetric matrix).

Finally, in this paper our aim is to maximize the antibandwidth, and we do this using a level-
based ordering. If the goal is to maximize the average antibandwidth, a different ordering may be
beneficial. In the literature on profile minimization, an ordering based on the Fiedler vector has been
shown to lead to better results compared with the level-based reverse Cuthill–McKee algorithm
[20]. We have experimented with using the Fiedler vector to maximize the average antiband-
width; preliminary results show that for some of our test problems, this can work well. We plan
to investigate this, and other refinement algorithms, further.
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