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Multilevel hybrid spectral element ordering algorithms
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SUMMARY

For frontal solvers to perform well on �nite-element problems it is essential that the elements are
ordered for a small wavefront. Multilevel element ordering algorithms have their origins in the pro�le
reduction algorithm of Sloan but for large problems often give signi�cantly smaller wavefronts. We
examine a number of multilevel variants with the aim of �nding the best methods to include within
a new state-of-the-art frontal solver for �nite-element applications that we are currently developing.
Numerical experiments are performed using a range of problems arising from real applications and
comparisons are made with existing element ordering algorithms. Copyright ? 2005 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

The frontal method is frequently the method of choice for solving the large sparse systems of
linear equations that arise during the solution of �nite-element problems. These systems are
of the form

AX =B (1)

where the n× n matrix A is a sum of nelt �nite-element matrices

A=
nelt∑
l=1
A(l) (2)

and B is an n× nrhs matrix (nrhs¿1) of known right-hand sides. Each matrix A(l) has non-zeros
only in a few rows and columns; A(l) corresponds to the contribution from element l and is
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normally held as a small dense matrix. One reason for choosing a frontal method is that only
a small amount of main memory is required to solve the problem. This allows very much
larger problems to be solved than is possible using a direct solver that works entirely in-core.
However, this is only true if it is possible to preorder the elements to ensure small fronts
throughout the computation. If aij and a

(l)
ij denote the (i; j)th entry of A and A

(l), respectively,
the basic assembly operation for constructing A is of the form

aij ⇐ aij + a
(l)
ij (3)

The main feature of the frontal method is that the Gaussian elimination operation

aij ⇐ aij − ail[all]−1alj (4)

may be performed once all the terms in the triple product in (4) are fully summed. A variable
is fully summed if it is involved in no further sums of form (3) and is partially summed if
it has appeared in at least one of the elements assembled so far but is not yet fully summed.
Thus by assembling the contributions A(l) from the �nite-elements one at a time and (provided
numerical stability conditions are satis�ed) performing eliminations as variables become fully
summed, the construction of the assembled coe�cient matrix A is avoided.
At each stage of the assembly and elimination processes, the fully and partially summed

variables are held in an in-core frontal matrix. In the innermost loop of the numerical factor-
ization, dense linear algebra operations are performed on the frontal matrix. For e�ciency, in
terms of both storage and arithmetic operations, the elements must be assembled in an order
that keeps the size of the frontal matrix, known as the wavefront, as small as possible. In
other words, the elements need to be ordered so that partially summed variables become fully
summed as soon as possible. If we denote by fi the number of variables in the front before
the ith elimination, of interest is:

• the maximum wavefront, since this a�ects the in-core storage needed,
• the sum of the wavefronts

n∑
i=1
fi

known as the pro�le, since this determines the total storage needed for the matrix factors,
and

• the root-mean-square wavefront de�ned by(
n∑
i=1
f2i =n

)1=2

since the work performed when eliminating a variable is proportional to the square of
the current wavefront.

Re�ecting the popularity of the frontal method, a number of algorithms for automatically
ordering �nite elements for small wavefront and pro�le have been reported on in the literature
(see, for example, Scott [1] for references to element ordering algorithms). Du� et al. [2]
divide element ordering algorithms into direct and indirect algorithms. As the name suggests,
direct algorithms order the elements directly while indirect algorithms use a two-step approach
in which the variables (or, more usually, the supervariables) are �rst relabelled and then

Copyright ? 2005 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2005; 21:233–245
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used to resequence the elements; the new variable indices are subsequently discarded. Results
presented by Du� et al [2] suggest that both approaches can be used e�ectively and in their
experiments neither was found to be consistently superior to the other.
Some of the most well-known element ordering algorithms are based on the pro�le and

wavefront reduction algorithm of Sloan [3]. The Sloan algorithm exploits the close relation-
ship between a matrix A of order n with a symmetric sparsity pattern and its undirected graph
with n nodes, that is, the adjacency graph G(A). In particular, it uses the level set structure of
G(A). In the late 1990s, Scott [1] developed an element ordering package MC63 for inclusion
in the HSL mathematical software library [4]. This package provides e�cient implementa-
tions of a number of variants of Sloan’s algorithm. In particular, it o�ers a hybrid variant
in which Sloan’s algorithm is used to re�ne an ordering provided by the user. Numerical
results reported by Scott [1] showed that if the user inputs a spectral ordering then, for large
problems, the hybrid method is a signi�cant improvement on Sloan’s algorithm (that is, it
generally produces smaller maximum and root-mean-squared wavefronts). The disadvantage
of the hybrid spectral–Sloan algorithm is the need to compute a spectral ordering, which can
add signi�cantly to the overall cost of ordering the elements.
Spectral orderings are expensive because they are dependent upon the computation of the

eigenvector corresponding to the smallest non-trivial eigenvalue of the Laplacian matrix as-
sociated with the graph of the problem, the so-called Fiedler vector [5]. Recently, a new
�exible software package that implements both an e�cient multilevel algorithm for comput-
ing the Fiedler vector and a number of multilevel pro�le reduction algorithms for sparse
matrices with symmetric sparsity patterns has been designed and developed by Hu and Scott
[6]. The new Fortran 95 code is called HSL MC73 and is included in HSL 2004 [4]. The aim of
this article is to report on using HSL MC73 to obtain high-quality multilevel element orderings
e�ciently for use with a frontal solver.
The outline of this article is as follows. In Section 2, the new code HSL MC73 is brie�y

described then, in Section 3, we look at how we can use HSL MC73 to obtain a number of
multilevel element ordering algorithms. Both direct and indirect variants are proposed and the
use of supervariables, which provide an e�ective initial coarsening of the adjacency graph, is
discussed. Numerical results are presented for the multilevel algorithms in Section 4. Finally,
some concluding remarks are made in Section 5.

2. A NEW MULTILEVEL PROFILE REDUCTION CODE

We start by brie�y describing the new multilevel Fiedler and pro�le reduction code HSL MC73.
Following the success of spectral orderings for graph partitioning, Barnard et al. [7] �rst

proposed using the Fiedler vector to obtain pro�le reducing orderings for matrices A with
symmetric sparsity patterns. Their algorithm is motivated as an attempt to minimize the
two-sum

min
x∈P

{ ∑
{i¡j: aij �=0}

(xi − xj)2
}

(5)

where P denotes the set of vectors whose components are permutations of

i − (n+ 1)=2; i=1; 2; : : : ; n
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That is,

min
x∈P

xTLx (6)

where L is the Laplacian of A given by

L= {lij}=




−1 if i �= j and aij �=0
0 if i �= j and aij=0∑
i �=j

|lij| if i= j

(7)

To make this problem tractable, albeit at the expense of not computing a guaranteed optimal
solution, a heuristic is introduced. Instead of minimizing over the discrete set P, problem
(6) is relaxed to x∈Rn with xTe=0 (e=[1; 1; : : : ; 1]T) and ‖x‖2 = ‖p‖2 for any p∈P. The
solution is then the eigenvector corresponding to the second smallest eigenvalue of L, that
is, the Fiedler vector. Applying the permutation induced by ordering the components of this
vector into monotonic order to the matrix A gives the so-called spectral ordering. In general,
it not only reduces the two-sum but also the pro�le and wavefront of A.
The main problem with implementing the spectral method is that computing eigenvectors

of large matrices is expensive. This led Barnard and Simon [8] to propose a multilevel
algorithm for computing the Fiedler vector. The basic multilevel Fiedler algorithm proceeds as
follows:

• Starting with the adjacency graph G(A), a series of graphs of successively coarser
(smaller) sizes is generated.

• At some point the graph has so few nodes that it is very cheap to compute the Fiedler
vector of the associated Laplacian.

• The coarse graph Fiedler vector is projected from one level to another. At each
level some re�nement is performed until, �nally, an (approximate) Fiedler vector for
the original Laplacian is obtained.

In broad terms, this is the algorithm that is implemented within the new software package
HSL MC73. A key observation is that, for both graph partitioning and for pro�le reduction
algorithms, it is not necessary to obtain the Fiedler vector to high accuracy; instead an ap-
proximate Fiedler vector is su�cient. Thus HSL MC73 is designed to compute an approximate
Fiedler vector and a number of parameters under the user’s control are used in determining
how accurate the requested eigenvector is. Full details of the algorithm, its implementation
and user interface are given by Hu and Scott [6].
As well as o�ering a multilevel spectral ordering algorithm for pro�le reduction, HSL MC73

includes implementations of the hybrid Sloan algorithm of Kumfert and Pothen [9] and the
multilevel Sloan algorithm of Hu and Scott [10]. The Sloan algorithm for pro�le and wavefront
reduction employs the adjacency graph G(A) of A and has two distinct phases:

1. Selection of a start node s and a target end node e.
2. Node reordering.

The �rst phase computes a pseudo-diameter of G(A) and uses it to provide s and e. In the
second phase, the chosen start node is numbered �rst and a list of nodes that are eligible to be
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numbered next is formed. At each stage of the numbering, the list of eligible nodes comprises
the neighbours of the nodes that have already been renumbered together with their neighbours.
The next node to be numbered is selected from the list of eligible nodes to maximize the
priority function

P(i)=−W1 inc(i) +W2 dist(i; e) (8)

where (W1; W2) are �xed positive weights. The �rst term, inc(i), is the amount by which the
wavefront will increase if node i is ordered next. The second term, dist(i; e), is the distance
between nodes i and the end node e. Thus, a balance is maintained between the aim of keeping
the wavefront small and bringing in nodes that have been left behind (that is, those far away
from the target end node e). A node has a high priority if it causes either no increase or only
a small increase to the current wavefront size and is at a large distance from the end node e.
Kumfert and Pothen [9] observed that there are problems for which the spectral algorithm

can perform poorly and this motivated them to propose a hybrid method that combines use
of the spectral ordering with a modi�ed version of the second phase of Sloan’s algorithm.
The �rst term in (8) a�ects the priority function in a local way, by giving higher priority
to nodes that will result in a small (or negative) increase to the current wavefront. This is
done in a greedy fashion, without consideration of the long-term e�ect. The second term
acts in a more global manner, ensuring nodes lying far away from the end node are not
left behind. The second phase of the Sloan algorithm can therefore be viewed as an al-
gorithm that re�nes the ordering implied by the distance function dist(i; e). Thus Kumfert
and Pothen modi�ed the second phase of Sloan’s algorithm so that, in place of the distance
function, it re�ned the spectral ordering. Their numerical experiments showed that, for large
problems, the resulting hybrid method generally gives signi�cantly smaller pro�les than those
obtained using the standard Sloan algorithm. This led us to design the package HSL MC73 to
include an option to compute a multilevel spectral ordering which is then re�ned to obtain the
so-called hybrid spectral–Sloan ordering (for further details, see Hu and Scott [6] and Reid
and Scott [11]).
The main disadvantage of the hybrid pro�le reduction method is that it requires signi�cantly

more CPU time than Sloan’s algorithm because it is more expensive to compute the Fiedler
vector than it is to �nd a pseudo-diameter for A using the (modi�ed) Gibbs–Poole–Stockmeyer
algorithm of Reid and Scott [11]. Even if the Fiedler vector is computed as in HSL MC73 using
a multilevel approach, the hybrid algorithm can be relatively expensive. In an attempt to avoid
computation of the Fiedler vector while still maintaining the quality of the hybrid algorithm,
Hu and Scott [10] proposed a multilevel version of Sloan’s algorithm. Mirroring the multilevel
Fiedler algorithm, the multilevel Sloan pro�le reduction algorithm comprises three separate
steps:

• A series of graphs of successively smaller sizes is generated.
• The coarsest graph is reordered using the Sloan algorithm.
• The coarse graph ordering is projected from one level to another by �rst mapping the
ordering for the previous (coarser) level onto the current level and then performing
re�nement using the second phase of Sloan’s algorithm.

Numerical results presented by Hu and Scott con�rm that this approach is faster than the hy-
brid method and, with appropriate coarsening and re�nement, produces orderings that are
of comparable quality. Thus, in addition to the multilevel spectral and hybrid methods,
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HSL MC73 includes an e�cient implementation of the multilevel Sloan algorithm for pro�le
reduction.

3. MULTILEVEL ELEMENT ORDERINGS

The input required by the package HSL MC73 is the sparsity pattern of the matrix A or, equiv-
alently, the adjacency graph G(A). In fact, any undirected (unweighted) graph can be input
and we use this facility to obtain multilevel element ordering algorithms.
There are a number of possible graphs associated with a �nite-element problem that have

been used for element resequencing. We consider two that our previous experiments [1, 2]
found to be e�cient with the Sloan algorithm: the supervariable connectivity graph and the
element communication graph. We will input these graphs to HSL MC73 and use them to obtain
multilevel indirect and direct element orderings, respectively.
In the variable connectivity graph the nodes are the variables de�ned on the �nite-element

mesh, and the edges are constructed by making the variables of each element pairwise adjacent.
This graph is the adjacency graph G(A) of the assembled �nite-element matrix A. However,
because in many �nite-element problems there are a number of degrees of freedom at each
node of the �nite-element mesh, a more compact representation of the �nite-element problem
is generally possible through the use of supervariables. A supervariable is a collection of one
or more variables, such that each variable belongs to the same set of �nite elements. The
�nite-element mesh can be transformed into a supervariable connectivity graph GS, whose
nodes are the supervariables and whose edges are formed by making the supervariables of
each �nite element pairwise adjacent.
For �nite-element problems, element connectivity graphs may be de�ned in which the nodes

are the �nite elements. There is more than one way in which the element connectivity may
then be de�ned. We restrict our attention to the element communication graph GEC in which
two elements are de�ned as being adjacent whenever they share at least one variable in
common.

3.1. Indirect multilevel element orderings

Our indirect multilevel element ordering algorithms proceed as follows:

• Generate the supervariable graph GS of A.
• Apply HSL MC73 to GS to obtain an ordering of the supervariables.
• Order the elements in ascending sequence of their lowest numbered supervariable and
then discard the supervariable ordering.

When HSL MC73 is applied to GS we have two options. We can either use the multilevel
Sloan algorithm or the hybrid spectral–Sloan algorithm (which employs the multilevel Fiedler
algorithm). We have performed experiments with both approaches and include results in Sec-
tion 4. We can also try and improve the HSL MC73 supervariable ordering prior to resequenc-
ing the elements using the Hager exchange algorithms. Hager [12] suggested two methods for
improving any given pro�le reducing permutation of a symmetric matrix A; a down
exchange algorithm and an up exchange algorithm, which he proposed using in an iterative
fashion (further details and results illustrating the e�ectiveness of the exchanges are given
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by Reid and Scott [13]). HSL MC73 includes an option to perform a user-chosen number of
down=up exchanges; we include results in Section 4 for using this option within our indirect
multilevel element ordering algorithm.

3.2. Direct multilevel element orderings

Using an analogous approach, our direct multilevel element ordering algorithms comprise the
following steps:

• Generate the element communication graph GEC of A.
• Apply HSL MC73 to GEC to obtain either a multilevel spectral ordering or a multilevel
Sloan ordering for GEC.

• Re�ne the element ordering using a modi�ed version of the second step of Sloan’s
algorithm.

The modi�ed version of Sloan’s algorithm that we use to re�ne the element ordering computed
by GEC is described in detail by Scott [1] and is implemented in the HSL package MC63. Again,
Hager exchanges may be used when ordering GEC using HSL MC73.

4. NUMERICAL RESULTS

The numerical experiments reported on in this section were performed on a single Xeon
3.06GHz processor of a Dell Precision Workstation 650 with 4GBytes of RAM under the
Fedora Core 1 Linux operating system. The NAG Fortran 95 compiler was used with the
compiler optimization �ag -O. All timings are CPU times, measured using the Fortran 95
routine cpu time and are given in seconds. Unless otherwise stated, the default values are
used for all MC63 and HSL MC73 control parameters.
The test problems used in our numerical experiments are listed in Table I. The problems

range in size from fewer than 1000 elements to more than 70 000 elements with almost
225 000 degrees of freedom. For each problem the order n of A together with the number
nsup of supervariables is given. For cham and tubu, only lists of supervariables belonging to
each element were available so for these problems n= nsup. For the remaining problems, we
note that the number of supervariables is signi�cantly less than the number of variables.

4.1. Use of supervariables

To illustrate the importance of using supervariables, in Table II we present results for the
indirect multilevel Sloan algorithm using the variable connectivity graph G(A) and the super-
variable graph GS. We see that using supervariables leads to large savings in the time required
to reorder the elements. For most of our examples, the time is reduced by a factor of more
than 10. Furthermore, for many of the problems, the root-mean-square wavefront is signi�-
cantly smaller if supervariables are used. It appears that the initial coarsening of the variable
connectivity graph by using supervariables is generally more e�ective than the coarsening
used within the multilevel code HSL MC73. Note that, although not given here, the root-mean-
square wavefronts for the direct multilevel element ordering algorithms are not a�ected by
using supervariables in place of variables but there is a small time saving if supervariables
are used. All results in the remainder of this report are computed using supervariables.
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Table I. The test problems.

Identi�er n nsup Elements Description=discipline

cham 12 834 12 834 11 070 Part of an engine cylinder
crplat2 18 010 3004 3152 Corrugated plate �eld
fcondp2 201 822 33 913 35 836 Oil production platform
fullb 199 187 33 442 59 738 Full-breadth barge
halfb 224 617 38 556 70 211 Half-breadth barge
inv-ext-2 78 142 19 734 7193 Fluid �ow
mt1 97 578 17 044 5328 Tubular joint
opt1 15 449 3802 977 Part of condeep cylinder
ship 001 34 920 5843 3431 Ship structure—predesign
ship 003 121 728 20 287 45 464 Ship structure—production
shipsec1 140 874 23 479 41 037 Section of a ship
shipsec5 179 860 17 260 52 272 Section of a ship
shipsec8 114 919 19 532 32 580 Section of a ship
srb1 54 924 9154 9240 Space shuttle rocket booster
thread 29 736 8838 2176 Threaded connector
trdheim 22 098 2868 813 Mesh of the Trondheim fjord
troll 213 453 48 435 41 084 Structural analysis
tsyl201 20 685 2881 960 Part of condeep cylinder
tubu 26 573 26 573 23 446 Engine cylinder model
x104 108 384 17 260 26 019 Beam joint

n and nsup denote the number of variables and supervariables, respectively.

Table II. The root-mean-square wavefronts and times required
by the indirect multilevel Sloan algorithm using the variable

and supervariable connectivity graphs.

r.m.s Time

Identi�er G(A) GS G(A) GS

crplat2 332 260 0.24 0.01
fcondp2 2631 1862 3.25 0.23
fullb 1943 3110 3.32 0.33
halfb 1638 1462 3.49 0.35
inv-ext-2 3378 2272 9.18 0.37
mt1 1339 1626 2.37 0.15
opt1 530 526 0.44 0.04
ship 001 460 450 1.57 0.05
ship 003 1400 1544 3.28 0.22
shipsec1 2398 1686 2.51 0.22
shipsec5 1496 1370 2.80 0.28
shipsec8 2377 1701 1.86 0.19
srb1 318 327 0.71 0.05
thread 2294 1706 1.06 0.13
trdheim 145 161 0.42 0.02
troll 4265 2377 3.71 0.46
tsyl201 505 513 0.57 0.02
x104 1020 1106 3.56 0.11
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Table III. The root-mean-square wavefronts computed by the Sloan and multilevel algorithms.

Sloan Hybrid Multilevel
(MC63) spectral–Sloan Sloan

Identi�er Direct Indirect Direct Indirect Direct Indirect

cham 332 332 334 332 368 691
crplat2 334 327 234 244 271 257
fcondp2 3024 2667 1827 1700 2164 1863
fullb 2172 2021 1879 1833 2152 3110
halfb 1776 1608 1411 1365 1500 1462
inv-ext-2 8429∗ 3379∗ 8632∗ 2272 8699∗ 2272
mt1 1546 1335 1018 1176 1149 1626
opt1 619 528 539 557 592 526
ship 001 693 451 500 461 510 450
ship 003 1739 1558 1427 1371 1565 1544
shipsec1 2629 2494 1895 1444 1524 1686
shipsec5 1803 1499 1345 1317 1425 1370
shipsec8 2080 2302 1746 1644 1818 1701
srb1 321 318 334 326 338 327
thread 2215 1962 1442 1122 1948 1701
trdheim 172 146 147 155 135 161
troll 4334∗ 4229∗ 3912 3593 2669 2377
tsyl201 511 504 512 512 510 513
tubu 408 451 414 403 452 454
x104 1064 1268 1007 1061 989 1106

∗The wavefront is larger than for the original ordering.

4.2. Sloan vs multilevel algorithms

In Table III we compare the performance of the Sloan algorithm (as implemented within MC63)
with the multilevel algorithms. We include both direct and indirect variants. For the multilevel
algorithms, we report results for the hybrid spectral–Sloan algorithm (with the spectral ordering
computed using HSL MC73) and for the multilevel Sloan algorithm (again computed using
HSL MC73 and, for the direct algorithm, re�ned using MC63). For each problem, the smallest
root-mean-square wavefront (and any within 5 per cent of the smallest) are highlighted in bold.
Note that when assessing the relative performance of the algorithms we make no distinction
between the smallest wavefront and those that are close to the smallest since tie-breaking
strategies within the implementation of each algorithm can lead to small variations in the
computed wavefronts. Looking �rst at the results for the direct ordering algorithms (that is,
the numbers in columns 2, 4 and 6), we see that both the hybrid spectral–Sloan and the
multilevel Sloan algorithms are generally an improvement on the Sloan algorithm. For many
of the larger problems, including fcondp2 and shipsec1, the improvements are substantial.
Comparing the two direct multilevel variants, the direct multilevel Sloan algorithm does not
perform as well as the direct hybrid spectral–Sloan. Similar conclusions can be drawn when
comparing the di�erent indirect variants. Overall, the best method appears to be the indirect
hybrid spectral–Sloan algorithm, with the advantage over the MC63 Sloan algorithm being
greatest for the large test problems (those with more than about 10 000 elements). The indirect
hybrid algorithm produces the best (or close to the best) results for the majority of our test
problems.
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Table IV. The time (in seconds) for reordering the elements using the
Sloan and multilevel algorithms.

Sloan Hybrid Multilevel
(MC63) spectral–Sloan Sloan

Identi�er Direct Indirect Direct Indirect Direct Indirect

cham 0.01 0.01 0.15 0.20 0.15 0.15
fcondp2 0.09 0.09 0.31 0.33 0.29 0.23
halfb 0.20 0.13 0.79 0.44 0.73 0.35
mt1 0.02 0.05 0.06 0.22 0.05 0.15
ship 003 0.17 0.09 0.49 0.27 0.64 0.22
shipsec1 0.13 0.09 0.64 0.27 0.45 0.22
shipsec8 0.13 0.08 0.44 0.25 0.44 0.19
thread 0.01 0.04 0.03 0.23 0.03 0.13
x104 0.02 0.05 0.05 0.20 0.05 0.10

If only a single or small number of matrix factorizations and solves are to be performed
following the reordering of the elements, the cost of reordering the elements may be a concern.
Timings for a subset of our test problems are given in Table IV. The Sloan algorithm (MC63) is
clearly signi�cantly faster than the multilevel and hybrid variants, particularly for the problems
with a large number of supervariables and elements. As already noted, Hu and Scott [10]
introduced the multilevel Sloan pro�le reduction algorithm to save on the time required to
compute a spectral ordering and we do achieve some savings in the element ordering times
by using the multilevel Sloan algorithm rather than the spectral approach. For our examples,
the indirect multilevel algorithm is between 25 and 50 per cent faster than the indirect hybrid
algorithm.

4.3. E�ect of Hager exchanges

The results reported so far did not use Hager exchanges. The results in Table V illustrate the
reductions in the root-mean-squared wavefront that are achieved by using Hager exchanges
within the call to HSL MC73. In these experiments, up to a maximum of �ve down=up exchanges
were allowed (the number of exchanges performed is fewer than �ve if the reductions in
the pro�le are less than a prescribed amount; see Reid and Scott [13] for details). Results
are given for both the indirect spectral–Sloan and multilevel Sloan algorithms. Problems for
which the Hager exchanges do not reduce the root-mean-square wavefront are omitted while
those for which the reduction exceeds 5 per cent are highlighted in bold. We see that there
are only two problems for which the Hager exchanges applied to the hybrid spectral–Sloan
ordering leads to a signi�cant reduction in the wavefront. For the multilevel algorithm, Hager
exchanges improve the ordering for a few more test examples and for some, including halfb
and shipsec8, the multilevel plus Hager ordering is competitive with the hybrid spectral–
Sloan ordering. Using Hager exchanges can add a large overhead to the cost of the element
ordering. For example, for problem halfb, the multilevel reordering time increases from 0.35
to 0.58 s and for shipsec8 from 0.19 to 0.33 s. But these increases are small compared with
the time required for the subsequent factorization (see Table VI below).
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Table V. The root-mean-square wavefronts computed using
the indirect spectral–Sloan and multilevel Sloan algorithms

with and without Hager exchanges.

Hybrid Multilevel
spectral–Sloan Sloan

Identi�er Without With Without With

cham 332 330 691 680
crplat2 244 232 257 239
fcondp2 1700 1621 1863 1805
fullb 1833 1804 3110 2832
halfb 1365 1362 1462 1371
ship 001 461 460 450 447
ship 003 1371 1322 1544 1544
shipsec1 1444 1418 1686 1495
shipsec5 1317 1276 1370 1300
shipsec8 1644 1545 1701 1562
srb1 326 326 327 324
troll 3593 3349 2377 2249
tubu 403 383 454 444
x104 1061 1052 1106 1104

∗Numbers in bold indicate a reduction of at least 5 per cent.

Table VI. The results of using MC63 and the hybrid spectral–Sloan orderings
with the frontal solver MA42.

MA42 time Number �ops Factor entries
(s) (× 108) (× 105)

Identi�er MC63 Hybrid MC63 Hybrid MC63 Hybrid

cham 3.1 3.2 29 29 85 85
crplat2 4.0 2.3 40 20 118 84
fcondp2 1657 785 27 393 11 560 9139 6100
fullb 1052 882 16 117 13 309 7735 7125
halfb 712 575 10 463 8259 6477 5927
inv-ext-2 962 478 16 387 7631 4877 3249
mt1 230 145 3462 2013 2397 1879
opt1 7.2 7.3 85 86 149 148
ship 001 13 13 140 146 312 318
ship 003 404 309 5663 4543 3557 3225
shipsec1 1075 388 17 138 5683 6316 3778
shipsec5 544 431 7964 6139 5183 4563
shipsec8 641 413 9011 6217 4187 3640
srb1 12 12 114 120 342 394
thread 145 52 2271 727 1086 627
trdheim 1.1 1.1 6 6 60 62
troll 3468 3612 54 610 55 210 13 428 13 433
tsyl201 9.3 9.3 104 108 205 210
tubu 8.6 8.4 91 89 208 208
x104 149 145 2054 2036 1882 1861
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4.4. Element ordering with a frontal solver

As already discussed, the main motivation behind the work in this report is the need to
compute element orderings that are e�cient when used with a frontal solver. In this section,
we present results for using the best element ordering method that we have, that is the indirect
hybrid spectral–Sloan algorithm, with the well-known HSL frontal solver MA42 of Du� and
Scott [14]. Comparisons are made with ordering the elements for MA42 using MC63 (both the
direct and indirect Sloan algorithms are run and for each problem the better of the two is
selected). Numerical values in the range (0; 1) are generated for the entries of the matrices
using the HSL pseudo-random number generator routine FA14. Default settings are used for
the MA42 control parameters (with a minimum pivot block size of 16) and direct access �les
are used to store the matrix factors. In Table VI timings for factorizing and solving for
a single right-hand side are given, together with �op counts (the number of �oating point
operations required to factorize the matrix) and the number of entries in the matrix factors.
For each problem, the fastest time is highlighted in bold (no distinction is made between the
two times if the di�erence between them is less than 5 per cent). We see that the reductions
in the wavefronts reported on in Table III lead to sparser factors, smaller �op counts, and
substantial savings in the time required by the frontal solver MA42. For problems fcondp2
and shipsec1 the time is reduced by more than half. It is clear that, in general, the faster
factorization times more than compensate for the extra time required to reorder the elements
using the hybrid algorithm (see Table IV).

5. CONCLUDING REMARKS

In this article, we have looked at using multilevel variants of Sloan’s algorithm to reorder
�nite-elements for use with a frontal solver. Both direct and indirect versions of the reordering
algorithm have been considered and used in combination with spectral orderings and the Hager
exchange algorithm. Numerical experimentation illustrated the bene�ts of using supervariables
and showed that, in general, the best orderings are obtained using the indirect hybrid spectral–
Sloan algorithm. We are currently developing a new Fortran 95 frontal solver for inclusion
in the software library HSL 2004 [4]. Previous frontal solvers within HSL have required the
user to preorder the elements but because using a good ordering is essential for the e�ciency
of the method, the new package will automatically reorder the elements for the user. Based
on the results presented in this paper, the default setting will be to reorder the elements using
the indirect hybrid spectral–Sloan algorithm, with the multilevel Fiedler code HSL MC73 called
internally to compute the necessary spectral ordering of the supervariable connectivity graph.
Because the MC63 Sloan orderings are fast and generally produce orderings of a similar quality
for relatively small problems, the new package will include an option to reorder using MC63.
Hager exchanges generally did not result in signi�cant reductions in the wavefront, so we do
not plan to include their use within the new frontal code.
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