
Computers and Chemical Engineering 25 (2001) 1699–1709

The design of a portable parallel frontal solver for chemical
process engineering problems

Jennifer A. Scott *
Computational Science and Engineering Department, Atlas Centre, Rutherford Appleton Laboratory, Oxon OX11 0QX, UK

Received 8 February 2001; received in revised form 13 August 2001; accepted 13 August 2001

Abstract

We report on the design and development of a parallel frontal code HSL–MP43 for the numerical solution of the large sparse
highly unsymmetric linear systems of equations that arise in industrial-scale chemical process engineering. HSL–MP43 has been
developed for the mathematical software library HSL 2000 (http://www.cse.clrc.ac.uk/Activity/HSL). The main design goals for
HSL–MP43 were: probability, ease of use, efficiency, and flexibility. We discuss how each of these objectives is addressed within
HSL–MP43 and illustrate the performance of the code using a range of large-scale problems from chemical process simulation
and optimisation. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Unsymmetric linear systems; Frontal method; Parallel processing; Fortran 90; MPI

www.elsevier.com/locate/compchemeng

1. Introduction

The repeated solution of large sparse highly unsym-
metric linear systems of equations is generally the most
computationally expensive step in the simulation of
large-scale chemical processes, often requiring in excess
of 90% of the total run time. One possible approach to
reducing the computational time while also allowing
larger problems to be solved, is to employ parallel
algorithms that can be efficiently implemented on mod-
ern supercomputers. In a recent paper, Mallya, Zitney,
Choudhary and Stadtherr (1997) introduced a parallel
block frontal solver PFAMP that was developed using
the frontal code FAMP (Zitney & Stadtherr, 1993;
Zitney, Brull, Lang & Zeller, 1995). Mallya et al.
demonstrated the potential of their parallel frontal
solver for the linear systems arising in chemical process
engineering and, through the use of a number of practi-
cal examples, illustrated the reduction in the wallclock
times that can be achieved when solving such systems.

Although the results presented by Mallya et al. are
encouraging, PFAMP has a number of limitations.
Firstly, the code was developed at Cray Research, Inc.

and the University of Notre Dame specifically for use
in the context of process simulation: the code is not
generally available or designed for use on platforms
other than CRAY machines. Secondly, PFAMP does
not incorporate local row ordering and so the efficiency
of the code is dependent upon the ordering supplied by
the user. This limits the class of problems on which the
code works well. Furthermore, although the frontal
solver FAMP uses partial pivoting, the parallel code
incorporates more restrictive threshold pivoting. In this
paper, we describe the design and development of a
new general-purpose parallel solver that aims to over-
come these problems. The code, HSL–MP43, has been
developed for the mathematical software library HSL
2000 (HSL, 2000) and is available for use under licence
(see http://www.software.aeat.com/HSL2000 for de-
tails). HSL–MP43 exploits the well-established frontal
solver MA42 of Duff and Scott (1993, 1996b), which is
also included in HSL, 2000. It is written in standard
Fortran 90 with MPI for message passing (MPI, 1994).
This makes the code portable and allows it to be run on
any platform on which MPI is available. The code is
not restricted to solving process simulation problems:
HSL–MP43 may be used to solve any unsymmetric
sparse linear system of equations that can be pre-
ordered to bordered block diagonal form. A key feature

* Tel.: +44-1235-445131; fax: +44-1235-446626.
E-mail address: j.scott@rl.ac.uk (J.A. Scott).

0098-1354/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.
PII: S 0 0 9 8 -1354 (01)00731 -1

J.A. Scott / Computers and Chemical Engineering 25 (2001) 1699–17091700

of the code is its use of the recent row ordering strategy
of Scott (2001). Furthermore, by appropriate preorder-
ing of the system matrix, HSL–MP43 is able to use
partial pivoting for stability and its performance is
enhanced through the use of block pivots.

This paper is organised as follows. In Section 2, we
recall the frontal and multiple front methods. The
design and development of our parallel frontal solver
HSL–MP43 is then discussed in Section 3. Numerical
results are presented in Section 4. The performance of
HSL–MP43 is also compared with that of the frontal
code MA42 and the well known general-purpose sparse
direct linear solver MA48 of Duff and Reid (1996).
Finally, in Section 5, we make some concluding
remarks.

We end this section by introducing the test problems
that we will use throughout this paper to illustrate the
performance of HSL–MP43. The problems are listed in
Table 1. A † indicates the problem is included in the
University of Florida Sparse Matrix Collection (Davis,
1997). The remaining problems were supplied by Mark
Stadtherr of the University of Notre Dame. Further
details of the test problems are given in Scott (2001);
see also Mallya et al. (1997) and the website http://
www.cise.ufl.edu/�davis/sparse/. The symmetry index
s(A) of a matrix A is the number of matched nonzero
off-diagonal entries (that is, the number of nonzero
entries aij, i� j, for which aji is also nonzero) divided by
the total number of off-diagonal nonzero entries. Small
values of s(A) indicate a matrix is far from symmetric
while values close to 1 indicate an almost symmetric
sparsity pattern. We see that the test problems, with the
exception of the ethylene problems, are all highly
unsymmetric.

Unless stated otherwise, the numerical results pre-
sented in this paper were computed on the SGI Origin

2000 in Manchester, UK. All timings are wallclock
times given in seconds and, in each case, are the mini-
mum times over ten runs. The MONET code of Hu,
Maguire and Blake (2000) was used to preorder the
matrix to singly bordered block diagonal form (see
Sections 2.1 and 3.4.6).

2. The frontal and multiple front approaches

2.1. Background

We start by recalling the key features of the frontal
and multiple front approaches. Our interest lies in
solving the linear system

Ax=b, (1)

where the n×n matrix A is large and sparse, and the
right-hand side vector b and solution vector x are of
length n. The frontal method is a variant of Gaussian
elimination and involves the matrix factorisation

A=PLUQ, (2)

where P and Q are permutation matrices, and L and U
are lower and upper triangular matrices, respectively.
The solution is completed by performing the forward
elimination

PLy=b, (3)

followed by the back-substitution

UQx=y. (4)

The main feature of the frontal method is that the
nonzero entries of A are added (assembled) one row at
a time into a small dense matrix, termed the frontal
matrix. Once the last row with an entry in column l has
been assembled, column l is said to be fully summed.
Partial pivoting is performed on each column as it
becomes fully summed. The pivot rows and columns
are eliminated and an outer-product update on the
remaining frontal matrix is performed. Since the frontal
matrix is held as a full matrix, dense linear algebra
kernels (in particular, the high-level BLAS of Don-
garra, DuCroz, Duff & Hammarling, 1990) can be used
for these updates, and it is this that allows the frontal
method to perform at high Megaflop rates (see, for
example, Duff & Scott, 1994a).

By writing the rows and columns of the matrix
factors as they are generated on to disk (for example, in
direct-access files), the frontal method may be imple-
mented using only a small amount of main memory.
The memory required is dependent on the size of the
largest frontal matrix. The number of floating-point
operations and the storage requirements for the matrix
factors are also dependent on the size of the frontal
matrix at each stage of the computation. Since the size

Table 1
The test problems

OrderIdentifier Number of Symmetry index
entries

4cols 11 770 0.015943 668
29 49610cols 109 599 0.0167

bayer01† 57 735 277 774 0.0002
6747bayer03† 56 196 0.0031

20 545bayer04† 159 082 0.0016
bayer09† 3083 21 216 0.0212

0.297380 90410 673ethylene-1
10 353ethylene-2 78 004 0.3020

icomp 75 724 338 711 0.0010
73371hr 07c† 156 508 0.0174

14 270 307 8581hr 14c† 0.0066
35 1521hr 34c† 764 014 0.0015
70 304 1 528 0921hr 71c† 0.0016

†, indicates problem taken from University of Florida Sparse Matrix
Collection.

J.A. Scott / Computers and Chemical Engineering 25 (2001) 1699–1709 1701

of the frontal matrix increases when a variable enters
the frontal matrix for the first time and decreases
whenever a variable is eliminated, the order in which
the rows are assembled is crucial for efficiency.

The frontal method has been used successfully for
almost 30 years to solve a wide variety of problems.
However, for modern computers, a major deficiency of
the method lies in its lack of scope for parallelism other
than that which can be obtained within the high-level
BLAS. To circumvent this shortcoming, for problems
arising from finite-element applications Duff and Scott
(1994a) proposed allowing a (small) number of inde-
pendent fronts in a somewhat similar fashion to Ben-
ner, Montry and Weigand (1987), Zang and Liu (1991)
(see also Zone & Keunings, 1991). Mallya et al. (1997)
proposed extending this idea to non-element problems.

In the so-called multiple front approach for general
unsymmetric problems, the matrix is preordered to
singly bordered block diagonal form

�
�
�
�
�

A11 C1

A22 C2

… .
ANN CN

�
�
�
�
�

, (5)

where the rectangular diagonal blocks All are ml×nl

matrices with ml�nl, and the border blocks Cl are
ml×k. If kl�k is the number of columns of Cl with at
least one nonzero entry, the ordering should be chosen
so that kl�nl. A partial LU decomposition is per-
formed on each of the matrices

(All Cl) (6)

using the frontal method. This can be done in parallel.
As the rows of Eq. (6) are assembled, nl variables
become fully summed and may be eliminated. These
variables correspond to the columns of All ; the kl

columns of Cl do not become fully summed because
they have entries in at least one other border block Cj

(j� l). Since the All are, in general, rectangular, at the
end of the assembly and elimination operations, for
each block there will remain a frontal matrix Fl of order
(ml−nl)×kl. The variables that remain in the front are
termed the interface �ariables and the sum F of these
remaining frontal matrices is the interface matrix. The
k×k interface matrix may also be factorized using the
frontal method. Once F has been factorized, block
forward eliminations and back-substitutions can be per-
formed (in parallel) to complete the solution.

We remark that for efficiency, the number of
columns kl in the border blocks Cl should be kept as
low as possible. This ensures the order k of the interface
problem is small and thus that most of the computa-
tional effort is in solving the subproblems Eq. (6) rather
than in solving the interface problem. In addition, for
load balancing reasons, it is advisable that the diagonal

blocks All should all be of a similar size. This is
particularly important when the number of blocks is
equal to the number of processes used in the parallel
implementation.

2.2. HSL–MP43 multiple front algorithm

We now outline how the multiple front algorithm is
implemented within our new multiple front code HSL–
MP43. We assume the matrix has been preordered to
singly bordered block diagonal form and that p pro-
cesses are used (p�N), with one process designated as
the host. The host performs the initial checking of the
data, distributes data to the remaining processes, col-
lects computed data from the processes, solves the
interface problem, and generally oversees the computa-
tion. With the other processes, the host also participates
in local row ordering and in generating the partial LU
decompositions.

Algorithm HSL–MP43:
Initialize: performed by host.
� Assign an equal (or near equal) number of subma-

trices to each of the p processes.
Reorder (parallel, optional)
� Each process generates a local row ordering for

each of its assigned submatrices (All Cl) (see Sec-
tion 2.3) and sends estimated flop counts for the
frontal solver applied to the submatrix based on
this local ordering to the host. We denote by Pl

the permutation matrix that corresponds to the
local row ordering for submatrix l.

� The host uses the flop counts to redistribute the
submatrices between the processes ready for the
factorisation. The aim is to achieve a good load
balance in terms of flops.

Frontal factorisation (parallel)
For each of its assigned submatrices, process pj per-
forms the following steps:
� A symbolic analysis using the sparsity pattern of

the matrix A� l, where A� l is the (ml+1)× (nl+kl)
matrix

A� l=
�PlAll PlCl

0 dl
T

�
, (7)

where the kth entry of the vector dl is nonzero if
and only if column k of PlCl has at least one
nonzero entry. The symbolic analysis determines
when each column of PlAll is fully summed and
computes memory requirements for the frontal
elimination.

� The frontal elimination on (PlAll PlCl), incorporat-
ing partial pivoting for numerical stability. Note
that, because the symbolic analysis was performed
on the matrix A� l, which has an additional row, the

J.A. Scott / Computers and Chemical Engineering 25 (2001) 1699–17091702

columns of PlCl do not become fully summed and
in this way eliminations are restricted to the
columns of PlAll.

� Storage of the computed columns of L and rows
of U. The rows and columns remaining in the
frontal matrix are passed to the host for assembly.

Interface problem: (host)
� The frontal method is used on the host to factorise

the interface matrix. Note that by using the frontal
method, explicit assembly of the interface matrix is
avoided.

Sol�e (parallel)
� Forward elimination on the submatrices is fol-

lowed, on the host, by forward elimination and
back-substitution for the interface problem. Back-
substitution on the submatrices completes the
computation of the solution.

The above algorithm is modified if right-hand vectors
b are available at the time of the frontal factorisation.
In this case, forward elimination operations are per-
formed as the partial L and U factors are generated.
The frontal method then computes the solution for the
interface variables and back-substitutions on the sub-
matrices give the final solution.

HSL–MP43 is written using the well established
frontal code MA42 (Duff & Scott, 1993). In particular,
on each process subroutines from the MA42 package
are used to perform the symbolic analysis, the frontal
factorisation, and the forward elimination and back-
substitution operations. The host also uses MA42 to
solve the interface problem.

2.3. Local row ordering

In a recent paper, Scott (2001) demonstrated the
importance for the performance of the multiple front
algorithm of having a good local row ordering for each
of the submatrices. It is of particular importance if a
number of matrices having the same sparsity pattern
are to be factorised or if the factors generated are to be
used repeatedly for solving for different right-
hand sides b. In such instances, the effort spent on
generating a good row ordering pays dividends in the
resulting reductions in the overall computational times
and the storage requirements. In the last few years, a
number of algorithms for automatically ordering the
rows of A for use with frontal solvers have been
proposed (see Scott, 2000). The most successful meth-
ods currently available are the MSRO methods of Scott
(1999). Scott (2001) proposed modifying the MSRO
algorithm to take into account the columns that are not
fully summed within the submatrix. A Fortran code
MC62 implementing the modified MSRO algorithm has
been developed for HSL 2000 and is used by HSL–
MP43.

2.4. Numerical pi�oting

We observe that preordering A to the form Eq. (5)
allows the multiple front method to incorporate partial
pivoting to ensure numerical stability. By contrast, the
code PFAMP requires the matrix to be preordered to
the form

�
�
�
�
�
�
�

A11

A22

···

ANN

S1 S2 SN

�
�
�
�
�
�
�

. (8)

The frontal solver is applied to the diagonal block Aii

and the corresponding portion of the border Si. Pivot
rows can only be chosen from Aii because the border
rows are shared by more than one diagonal block. Thus
Mallya et al. (1997) propose a partial-threshold pivot-
ing strategy. This is not only more time-consuming but
can cause pivots to be delayed, resulting in an increase
in the size of the local frontal matrix beyond that
predicted by the symbolic analysis phase and an in-
crease in the size of the interface problem. These in-
creases may lead to higher flop counts and denser
factors (see Mallya et al., 1997 for further discussion).

3. The design of HSL–MP43

In this section, we look at how the new parallel
frontal solver HSL–MP43 has been designed to achieve
the objectives of being portable, user-friendly, efficient,
and flexible. We consider each of these goals in turn.

3.1. Portability

To ensure the code can be used on a wide range of
modern computers, HSL–MP43 is written in standard
Fortran 90 and uses MPI for message passing. Fortran
90 was chosen not only for its efficiency for scientific
computation but also because it offers many more
features than Fortran 77. In particular, HSL–MP43
makes extensive use of dynamic memory allocation and
this allows a much cleaner user interface. MPI was
chosen since the MPI Standard is internationally recog-
nised and today it is widely available and accepted by
users of parallel computers.

HSL–MP43 does not assume that there is a single
file system that can be accessed by all the process. This
enables the code to be used on distributed memory
parallel computers as well as on shared memory
machines.

One of the options offered by HSL–MP43 is for the
matrix factors to be held in direct-access files. This
allows much larger problems to be solved than would

J.A. Scott / Computers and Chemical Engineering 25 (2001) 1699–1709 1703

otherwise be possible and further increases the portabil-
ity of the code by enabling it to be run on machines
where each process has only a limited amount of main
memory.

3.2. User interface

A key design aim for HSL–MP43 was a user inter-
face that is straightforward and, at the same time,
offers flexibility through a variety of options. Our
intention was that it should be possible for the code to
be used by those who have only a basic knowledge of
MPI together with limited experience of Fortran 90
programming.

HSL–MP43 has a single user-callable subroutine
MP43A with a single parameter data of Fortran 90
derived datatype MP43–DATA, viz

TYPE (MP43–DATA)::data
CALL MP43A (data)
The derived datatype has many components, only

some of which are of interest to the user. A number of
components must be set by the user. These include the
components that define the sparsity pattern of A and
the bordered block diagonal form. Other components
are used by the package to provide the user with
information on the computation (including frontsizes,
flop counts, and factor storage). Full details of the
derived datatype are provided in the user
documentation.

Prior to the first call to MP43A, the user must
initialise MPI by calling MPI–INIT on each process.
The user must also define an MPI communicator for
the package. The communicator defines the set of pro-
cesses to be used. HSL–MP43 then has five separate
phases:
� Initialize: checks user data, sets control parameters.
� Analyse: combines local row ordering and symbolic

analysis.
� Factorise: performs the partial LU factorisation of

the submatrices and factorisation of the interface
problem.

� Solve: uses the computed factors to solve for right-
hand sides b.

� Finalise: deallocates arrays and optionally deletes
files holding matrix factors.

The ‘job’ parameter data%JOB determines which phase
is to be performed. Each phase must be called in order
by each process, although the solve phase is optional,
and the analyse and factorise phases may be combined
in a single call. If right-hand side vectors b are passed
to the factorise phase, the solution x is returned to the
user at the end of that phase. If the user wishes to use
the matrix factors generated by the factorise phase to
solve for further right-hand sides, the solve phase
should be called. The user may factorise more than one
matrix at the same time by running more than one

instance of the package; an instance of the package is
terminated by calling the finalise phase.

The symbolic analysis and factorisation of the sub-
matrices are performed using the frontal code MA42.
We remark that MA42 is a reverse communication
code: each time a row of the matrix being factorised is
required, control is returned to the calling programme.
The user of HSL–MP43 is shielded from this reverse
communication: once the user has supplied the subma-
trix data, the computation proceeds without further
action on the user’s part. This arguably makes HSL–
MP43 a simpler code to use and may make it the code
of choice, even on a single processor machine. Perfor-
mance comparisons with MA42 on a single processor
are included in Section 4.

3.3. Efficiency

When designing HSL–MP43, particular attention
was paid to making the code efficient across a range of
computer platforms. As already mentioned, the frontal
method is able to exploit dense linear algebra kernels.
In particular, the frontal code MA42 uses Level 3
BLAS during the numerical factorisation to perform
the outer-product updates to the frontal matrix after
pivot rows and columns have been selected. Level 3
BLAS are also used during the solve phase when solv-
ing simultaneously for multiple right-hand sides; for
single right-hand sides, Level 2 BLAS are used. The use
of BLAS by MA42 is explained in detail by Duff and
Scott (1996b). Efficiency is achieved by using tailored
implementations of the BLAS. In the context of finite-
element applications it is often the case that a number
of variables become fully summed at the same assembly
step. Cliffe, Duff and Scott (1997) demonstrated that
the computational time required by the frontal method
may be reduced by performing more than one assembly
at a time and delaying computing the outer-product
updates until a block of pivots is available. Delaying
updating enhances the proportion of the computation
performed by Level 3 BLAS at the cost of increasing
the number of flops and the number of entries in the
factors. There is thus a trade-off between the use of
Level 3 BLAS and the computational cost. HSL–MP43
uses a modified version of MA42 that permits the user
to specify the minimum pivot blocksize; assembly of
rows into the front continues until either there are no
rows left to assemble or the number of fully summed
columns is at least as large as the minimum pivot
blocksize. In Table 2, factorisation and solve times (for
a single right-hand side) are presented for our test
problems for a range of different minimum pivot block-
sizes. The results are for a single processor of the Origin
2000 and, in each case, the number of blocks in the
singly bordered block diagonal form is four. Based on
our numerical experiments, the default value for the

J.A. Scott / Computers and Chemical Engineering 25 (2001) 1699–17091704

Table 2
Timings for the factorise and solve phases for different minimum
pivot blocksizes (Origin 2000)

Pivot blocksizeIdentifier

1 4 8 16

0.34/0.0304cols 0.31/0.0290.39/0.042 0.33/0.034
10cols 1.01/0.130 0.87/0.095 0.83/0.091 0.89/0.101

2.24/0.237bayer01 2.22/0.2202.44/0.245 2.28/0.233
0.22/0.017 0.22/0.0170.24/0.021 0.24/0.021bayer03
0.99/0.086 0.98/0.086bayer04 1.04/0.0951.06/0.090
0.09/0.006 0.09/0.0070.10/0.008 0.10/0.007bayer09

0.52/0.042ethyslene-1 0.49/0.037 0.46/0.037 0.48/0.038
0.68/0.055 0.62/0.0430.78/0.050 0.62/0.044ethyelene-2

2.03/0.235icomp 1.73/0.186 1.58/0.178 1.59/0.196
0.68/0.047 0.66/0.067 0.71/0.0441hr 07c 0.74/0.047
1.35/0.095 1.37/0.0901.55/0.104 1.41/0.0961hr l4c

1hr 34c 4.36/0.2835.12/0.285 4.28/0.251 4.55/0.272

To allow BLAS to be used when performing the
forward elimination and back-substitution operations,
MA42 uses direct addressing (see Duff & Scott, 1996b).
Provided the minimum pivot block size and number of
right-hand sides are sufficiently large, the overheads of
copying active components of the solution to and from
small dense vectors are offset by the gains from using
the BLAS. However, for small pivot blocks with a
single right-hand side, we have found it is more efficient
to use indirect addressing (even though the BLAS
cannot then be used). This is illustrated by the results
presented in Table 3, which are for the solve phase of
HSL–MP43 for a single right-hand side with and with-
out Level 2 BLAS. The runs were performed on four
processors of the Origin 2000, using the default mini-
mum pivot block size. We see that, in each example, the
solve phase is more efficient if Level 2 BLAS is not
used. For a number of problems, not using Level 2
BLAS reduces the solve time by about one third.

3.4. Flexibility

The call to the initialise phase of HSL–MP43 assigns
default values to the control parameters. These parame-
ters control the action and offer the user a number of
options. It is these options that make the package
flexible. We now discuss the main options. Full details
of all the control parameters and options are given in
the user documentation for HSL–MP43.

3.4.1. Input of matrix data
By default, the submatrices (All, Cl) are held in

direct-access files and the data required by a particular
process must be readable by that process. For each
submatrix, the data is read row-by-row as required by
the process to which it is assigned. This minimises main
memory requirements and data movement between
processes. Alternatively, the user may hold the subma-
trix data in unformatted sequential files so that the data
required by a process is again read by that process. If
this option is used, the data for all the rows in a
submatrix is read in at once, requiring more memory
but, again, movement of data between processes is
minimised. Options also exist for the host to read the
data for each of the submatrices from sequential files
or, alternatively, the user may supply the matrix data
using input arrays on the host. The latter form is useful
if the host has sufficient memory and the overhead for
using direct-access or sequential files is high. If the data
is input onto the host, there is an added overhead of
sending the appropriate data from the host to the other
processes. Since the host is also involved in the block
factorisations, this distribution of matrix data is carried
out before the factorisation commences.

Table 3
Timings for the solve phase with and without Level 2 BLAS (Origin
2000)

Identifier BLAS 2 No BLAS 2

0.0110.0164cols
0.04510cols 0.034
0.123bayer01 0.098
0.012bayer03 0.008
0.043bayer04 0.030
0.006bayer09 0.004

ethylene-1 0.016 0.011
0.018ethylene-2 0.013

icomp 0.140 0.085
1hr 07c 0.0130.016

0.040 0.0301hr 14c
0.1161hr 34c 0.110

minimum pivot blocksize has been chosen to be eight in
HSL–MP43. We remark that Mallya and Stadtherr
(1997) considered using 2×2 pivots within an early
version of their multiple front code. The 2×2 pivots
allowed the use of Level 3 BLAS but Mallya and
Stadtherr found the performance of their code was not
enhanced. They attributed this to the fact that they had
a highly optimised assembly language Level 2 BLAS
routine but had no comparable optimised Level 3
BLAS routine.

For chemical process engineering applications, the
user is often interested in factorising the matrix A and
then using the factors to solve repeatedly for one
right-hand side after another. Through its use of the
BLAS, MA42 is most efficient when solving for multi-
ple right-hand sides. When used for solving a single
right-hand side, MA42 has been found to be relatively
slow compared with other sparse solvers from HSL
2000, in particular, the solve phase of MA48 can be
significantly faster than MA42 (see Duff & Scott,
1996a).

J.A. Scott / Computers and Chemical Engineering 25 (2001) 1699–1709 1705

3.4.2. Use of files
The user may choose whether to hold the partial

factors in main memory or in direct-access files. Se-
quential files may also be used to store the data that
remains in the local frontal matrices after the partial
LU decompositions. This reduces main memory re-
quirements further and allows larger problems than
could otherwise be handled to be solved. However, the
extra I/O involved can increase the overall computa-
tional time and so we advise holding the factors and
local frontal matrices in main memory unless the prob-
lem is too large to be accommodated.

3.4.3. Use of MC62 for local row ordering
Reordering the rows of the submatrices using the

HSL ordering routine MC62 is optional. Although the
MSRO algorithm as implemented by MC62 has been
shown by Scott (2001) to perform well on a wide range
of problems (including many problems from applica-
tion areas outside chemical process engineering), the
user may wish to supply his or her own row order. This
might be the case if, for example, the problem is known
to be initially well ordered or if the user wants to test
the effectiveness of an alterative reordering algorithm
with the multiple front approach. Moreover, if the user
has already factorised a matrix with a given sparsity
pattern and wishes to factorise further matrices with the
same pattern, the row ordering returned from the
analyse phase for the original matrix can be reused.
Note that stability is ensured because the factorise
phase uses partial pivoting and, for each new matrix,
the pivots are recomputed. In Table 4, we compare the
time for this so-called ‘fast factorisation’ with that for
the standard factorisation that includes row ordering.
The timings are for the analyse phase plus the factorise
phase; in each case, the number of blocks in the singly
bordered block diagonal form is 4 and 4 processors of
the Origin 2000 are used. We see that the savings
achieved by reusing the row ordering are significant and
conclude that, if a user needs to factorise more than

one matrix with similar sparsity patterns, it is worth-
while finding a good ordering and then avoiding further
reordering.

3.4.4. Minimum pi�ot blocksize
As discussed in Section 3.3, the size of the minimum

pivot block influences the efficiency of the code. Based
on our experiments, we have set the default pivot
blocksize to 8 but, as other values may be more efficient
on different platforms and different problems, this is a
parameter that the user may choose to reset.

3.4.5. Storage of L factors
If the user supplies right-hand side vectors to the

factorisation phase, forward elimination operations are
performed as the partial L and U factors are generated.
Thus it is only necessary to store the L factors if the
user wishes to solve later for further right-hand sides.
To minimise storage requirements, HSL–MP43 offers
the user the option of not storing the L factors.

3.4.6. Preordering of A
An early design decision was not to incorporate code

for preordering of the matrix A to singly bordered
block diagonal form within HSL–MP43. There were a
number of reasons for this. Firstly, in some applica-
tions, the matrix naturally occurs in the required form.
Secondly, although the results presented by Scott (2001)
demonstrate that the recent MONET code of Hu,
Maguire and Blake (2000) performs well on the chemi-
cal process engineering problems considered in this
paper, HSL–MP43 is designed to be a general-purpose
sparse solver that may be used to solve linear systems
arising from different applications. In such cases, alter-
native approaches to reordering may need to be consid-
ered. While reordering unsymmetric matrices to
bordered form remains a subject of active research, we
decided not to tie HSL–MP43 to one particular pre-
ordering algorithm but to leave this step in the hands of
the user. Note, however, that a version of the MONET
code is planned for inclusion within HSL. This will
make it straightforward for the user to employ
MONET and then HSL–MP43.

4. Numerical results

In this section, we illustrate the performance of
HSL–MP43 and compare it with that of the frontal
code MA42 and the general sparse direct solver MA48
(Duff & Reid, 1996). Default values are used for all
control parameters. MA42 and MA48 do not use the
bordered block diagonal form (2.5). For MA42, the
rows of A are preordered using MC62. For each solver,
wallclock timings (in seconds) are presented for three
execution paths, namely:

Table 4
Timings for factor and fast factor (Origin 2000)

FactorIdentifier Fast factor

0.25 0.144cols
0.6310cols 0.34

bayer01 0.951.73
bayer03 0.31 0.12

0.42bayer04 1.03
0.15bayer09 0.05

0.231.06ethylene-1
0.291.21ethylene-2

1.65icomp 0.76
0.86 0.381hr 07c

0.561.711hr 14c
4.961hr 34c 2.14

J.A. Scott / Computers and Chemical Engineering 25 (2001) 1699–17091706

1. Analyse+Factorise+Solve (AFS): this is the time
required to perform the analyse phase, to determine
a pivot sequence, to compute the L and U factors of
A, and to perform the forward elimination and
back-substitution operations to solve Ax=b for a
single right-hand side b.

2. Fast Factorise (FF): this is the time taken to fac-
torise a matrix having the same sparsity pattern as
one that has already been factorised.

3. Solve (S): this is the time to solve Ax=b by per-
forming forward elimination and back-substitution
operations using previously computed L and U fac-
tors of A.

We first present timings on the Origin 2000 for
HSL–MP43 run on 1, 2, 4 and 8 processors, and
compare it with MA42 and MA48 run on a single
processor. For HSL–MP43, the number of blocks in

the singly bordered block diagonal form is eight. We
have not run on more than eight processors because
most of the problems are not large enough to reorder
into more than eight blocks. As the number of blocks
increases, so does the number of interface variables
and, for small problems, solving the interface problem
can quickly dominate the overall computational cost.
The times required for AFS are given in Table 5. The
time taken to preorder the rows of A for MA42 using
MC62 is included in the analyse time. In Table 6,
timings are presented for FF and, in Table 7, timings
are given for the S.

We see that, in general, on a single processor, the
AFS time for MA42 is faster than that for HSL–MP43.
There are a number of exceptions, notably the ethylene
problems. For these problems, using the MSRO al-
gorithm to order the rows of A for MA42 does not
improve the row order sufficiently for the frontal
method to perform well. For these problems, by pre-
ordering A to bordered block diagonal form and then
ordering the rows within each block and using the
multiple front approach, we are able to produce sparser
factors. For example, for ethylene-1, the factors com-
puted using MA42 have 35×105 entries whereas the
HSL–MP43 factors have a total of only 7.8×105

entries. HSL–MP43 is, of course, designed to be run on
more than one processor and, for each problem, using
only two processors, HSL–MP43 outperforms MA42.
The performance of HSL–MP43 improves as the num-
ber of processors increases to 4 and to 8, although for
the smallest problems the speedups achieved are less
than for the large problems. The MA42 solve is signifi-
cantly slower than HSL–MP43. This is because MA42
uses the BLAS during the forward elimination and
backsubstitution operations and, as discussed in Section
3.3, on the Origin 2000 it was found to be faster to use

Table 5
Timings for analyse+factorize+solve (Origin 2000)

MP43 number processorsMA48MA42Identifier

1 2 4 8

0.764cols 0.201.76 0.320.490.85
2.1110cols 0.691.212.09 0.464.93
5.47 4.45 5.14bayer01 2.90 1.91 1.16

0.41 0.90 0.53bayer03 0.310.67 0.20
2.53bayer04 1.91 3.15 1.81 1.10 0.69

0.10 0.36 0.22bayer09 0.150.24 0.11
ethylene-1 0.400.681.111.840.566.49

0.881.282.27 0.530.584.01ethylene-2
0.67icomp 5.234.47 2.97 1.88 1.17

1.94 2.40 2.691hr 07c 1.67 0.97 0.73
1hr 14c 1.214.11 5.15 5.46 3.10 1.84

16.1416.40 3.5511.031hr 34c 5.158.71
29.94 NS 33.47 18.27 10.371hr 71c 6.78

NS denotes not solved.

Table 6
Timings for fast factorise (Origin 2000)

MA42Identifier MA48 MP43 number processors

1 2 4 8

0.40 0.24 0.38 0.23 0.18 0.124cols
1.18 0.55 0.9310cols 0.56 0.34 0.26

0.921.302.210.483.21 0.58bayer01
0.050.45bayer03 0.29 0.18 0.13 0.10

0.95 0.21 0.98bayer04 0.62 0.42 0.33
0.070.080.11 0.060.020.06bayer09
0.18 0.140.220.340.064.35ethylene-1

0.510.073.27ethylene-2 0.160.200.32
0.11 1.75icomp 1.061.88 0.84 0.52

1hr 07c 0.420.470.610.840.440.38
0.720.971.54 0.580.833.301hr 14c

11.16 5.351hr 34c 3.182.62 2.23 1.80
11.62 4.497.14NS 3.771hr 71c 3.03

NS denotes not solved.

Table 7
Timings for solve (Origin 2000)

MA48 MP43 number processorsIdentifier MA42

4 81 2

4cols 0.0130.068 0.031 0.0100.0140.020
0.0270.19410cols 0.0360.0780.0880.047

0.421 0.083 0.214bayer01 0.188 0.117 0.067
bayer03 0.0070.0080.0110.0210.0050.192

0.0300.0530.083 0.0230.0270.142bayer04
bayer09 0.016 0.002 0.006 0.005 0.004 0.004

0.202 0.009 0.026 0.014 0.011 0.007ethylene-1
0.009ethylene-2 0.0370.175 0.019 0.010 0.008
0.049icomp 0.1780.415 0.124 0.101 0.073

0.0120.0190.0330.0451hr 07c 0.0280.040
1hr 14c 0.0600.094 0.095 0.062 0.037 0.033

0.1690.270 0.0861hr 34c 0.1250.1800.267
0.1710.2350.4630.563NS1hr 71c 0.939

NS denotes not solved.

J.A. Scott / Computers and Chemical Engineering 25 (2001) 1699–1709 1707

Table 8
Timings for HSL–MP43 run on 1 and 2 processors of a Compaq
DS20

FFAFS SIdentifier

1 2 1 2 1 2

0.17 0.174cols 0.090.31 0.019 0.011
10cols 0.81 0.44 0.43 0.24 0.061 0.039

1.57 1.62bayer01 0.892.70 0.171 0.115
0.19 0.09 0.060.33 0.010bayer03 0.006
0.96 0.80 0.51bayer04 0.0631.56 0.040
0.04 0.03 0.040.12 0.004bayer09 0.002

1.89ethylene-1 1.49 1.21 0.96 0.081 0.062
0.55 0.43 0.260.93 0.033ethylene-2 0.021

2.31icomp 1.37 1.09 0.67 0.093 0.067
0.54 0.28 0.17 0.028 0.0171hr 07c 0.93
1.15 0.69 0.392.04 0.0641hr 14c 0.043
3.68 2.68 1.71 0.173 0.1141hr 34c 6.26
9.11 8.40 4.76 0.405 0.25416.441hr 71c

HSL–MP43, it is more restrictive. The fast factorise
phase of MA48 uses exactly the same pivot sequence
that was computed on the initial factorisation. It
should, therefore, only be used if the user is confident
that the changes to the numerical values of the matrix
entries have not made this sequence unsuitable. To
check the solution, the user may decide to use the
iterative refinement option offered by the solve phase of
MA48. This adds a significant overhead to the execu-
tion time, but is not included in our results (see Duff &
Reid, 1996). By contrast, HSL–MP43 only reuses the
row assembly order and uses partial pivoting for stabil-
ity for the initial and subsequent factorisations.

4.1. Timings on other platforms

Experiments have also been performed on other plat-
forms. In Table 8, we present timings for HSL–MP43
on a Compaq DS20, which has two processors. Desk-
top computers with a small number of processors are
increasingly common as they become more affordable
and our results illustrate the very worthwhile speedups
that can be achieved using just two processors.

In Table 9 and Table 10, timings are given for
HSL–MP43 when run on 1, 2, 4 and 8 processors of
the Cray T3E-1200E at Manchester, UK. As in the
other experiments reported on in this paper, the factors
were held in main memory and no use was made of
direct-access files. Working in main memory, it was not
possible to solve some of the largest test problems using
only 1 or 2 processors (denoted by NS). Clearly, we
could use the option offered by HSL–MP43 to hold the
factors in direct-access files, but in our experience it is
not possible to achieve consistent (repeatable) timings
on the T3E if there is a significant amount of I/O.
Again, good speedups are achieved as the number of

indirect addressing and no BLAS when solving for a
single right hand side. Currently, MA42 does not offer
the user the option of not using the BLAS.

On a single processor, HSL–MP43 generally does
not perform as well as MA48. However, the analyse
phase of MA48 (with the default parameter values used
in our experiments) can be relatively slow so that, for
some problems (including 4 cols and 10 cols), MA42
and HSL–MP43 on a single processor are significantly
faster than MA48 for AFS. As the number of proces-
sors increases, HSL–MP43 generally outperforms
MA48, particularly when used for the largest problems,
for which it is primarily designed. We note that we were
not able to use MA48 to solve problem 1hr 71c because
there was insufficient memory (denoted by NS), empha-
sising the limitations of traditional serial sparse solvers.
Although the fast factorise for MA48 is faster than for

Table 9
HSL–MP43 timings for AFS and FF run on 1, 2, 4, and 8 processors of a Cray T3E

AFSIdentifier FF

1 2 4 8 1 2 4 8

0.20 0.45 0.28 0.194cols 0.140.82 0.50 0.31
10cols 0.402.26 1.16 0.65 0.39 0.251.14 0.65

2.59NS 1.63 0.94bayer01 NS 1.41 0.95 0.56
bayer03 0.78 0.44 0.27 0.17 0.36 0.21 0.14 0.10

2.76 1.56 0.96 0.64bayer04 1.34 0.82 0.53 0.40
0.28 0.18 0.12 0.10bayer09 0.12 0.09 0.07 0.06

ethylene-1 0.271.27 0.74 0.45 0.120.170.230.37
0.901.58ethylene-2 0.200.240.390.590.380.57

NS 2.49 1.61 0.88icomp NS 1.05 0.88 0.47
1.291hr 07c 0.761.011.59 0.550.650.892.56

1.692.875.031hr 14c 1.28 2.35 1.47 0.95 0.88
1hr 34c NS 9.21 5.60 3.92 NS 5.66 3.69 2.94

8.45 NS NS 8.921hr 71c 6.48NS NS 12.45

NS denotes not solved.

J.A. Scott / Computers and Chemical Engineering 25 (2001) 1699–17091708

Table 10
Timings for the solve (S) phase of HSL–MP43 run on 1, 2, 4, and 8
processors of a Cray T3E

1Identifier 2 4 8

0.0264cols 0.0210.038 0.015
10cols 0.091 0.060 0.040 0.030

0.128 0.096NS 0.061bayer01
0.018 0.013bayer03 0.0120.027
0.054 0.0360.082 0.028bayer04

bayer09 0.011 0.009 0.008 0.008
0.022 0.0190.033 0.013ethylene-1
0.028 0.018ethylene-2 0.0150.042
0.112 0.094NS 0.059icomp
0.034 0.0251hr 07c 0.0210.048
0.056 0.0430.092 0.0301hr 14c
0.157 0.1101hr 34c 0.072NS
NS 0.200NS 0.1451hr 71c

NS denotes not solved.

MP43 was designed with a number of different input
data options. On a cluster of workstations, the default
option is recommended whereby all the matrix data
required by a process is read by that process. In addi-
tion, if direct-access files are needed to hold the matrix
factors, the user should ensure that the files are held
locally. This can be achieved by appropriately setting
the parameters for the direct-access file names. Full
details are given in the user documentation.

The code HSL–MP43 is available for use under
licence through HSL 2000. Anyone interested in using
the codes may contact the author for details (or see
http://www.cse.clrc.ac.uk/Activity/HSL).

Acknowledgements

This work was funded by the EPSRC Grant GR/
M78502. I would like to thank my colleague Yifan Hu
for supplying a copy of his MONET code, which was
used to preorder the matrices to singly bordered block
diagonal form. I am grateful to Mark Stadtherr of the
University of Notre Dame for providing me with some
of the test problems. My thanks also to Iain Duff at the
Rutherford Appleton Laboratory for reading and com-
menting on a draft of this paper.

References

Benner, R. E., Montry, G. R., & Weigand, G. G. (1987). Concurrent
multifrontal methods: shared memory, cache, and frontwidth
issues. International Journal of Supercomputer Applications, 1,
26–44.

K.A. Cliffe, I.S. Duff, J.A. Scott (1997). Performance issues for
frontal schemes on a cache-based high performance computer.
Technical Report RAL-TR-97-001, Rutherford Appleton
Laboratory.

T. Davis (1997). University of Florida Sparse Matrix Collection. NA
Digest, 97(23). Full details from http://www.cise.ufl.edu/�davis/
sparse/.

Dongarra, J. J., DuCroz, J., Duff, I. S., & Hammarling, S. (1990). A
set of Level 3 Basic Linear Algebra Subprograms. ACM Transac-
tions of Mathematical Software, 16(1), 1–17.

Duff, I. S., & Reid, J. K. (1996). The design of MA48, a code for the
direct solution of sparse unsymmetric linear systems of equations.
ACM Transactions of Mathematical Software, 22, 187–226.

I.S. Duff & J.A. Scott (1993). MA42—a new frontal code for solving
sparse unsymmetric systems. Technical Report RAL-93-064,
Rutherford Appleton Laboratory.

I.S. Duff & J.A. Scott (1994a). The use of multiple fronts in Gaussian
elimination. Technical Report RAL-94-040, Rutherford Appleton
Laboratory.

I.S. Duff & J.A. Scott (1994b). The use of multiple fronts in Gaussian
elimination, in J. Lewis, ed., ‘Proceedings of the Fifth SIAM
Conference Applied Linear Algebra’, 567–571. SIAM.

I.S. Duff and J.A. Scott (1996a). A comparison of frontal software
with other sparse direct solvers. Technical Report RAL-TR-96-
102 (Revised), Rutherford Appleton Laboratory.

Duff, I. S., & Scott, J. A. (1996b). The design of a new frontal code
for solving sparse unsymmetric systems. ACM Transactions of
Mathematical Software, 22(1), 30–45.

processors increases, particularly for the larger
problems.

5. Concluding remarks

We have designed and developed a general-purpose
multiple front code for solving large sparse unsymmet-
ric systems of linear equations in parallel. The code
HSL–MP43, which is in Fortran 90 with MPI for
message passing, has been written using our extensive
knowledge and experience of frontal methods and, in
particular, uses the established frontal solver MA42
combined with the row ordering algorithm of Scott
(1999). Experiments have been run on a number of
practical problems arising from chemical process engi-
neering applications and we have achieved good
speedups using up to eight processors. Numerical re-
sults have also shown that, for large problems run on
four or eight processors, the new code can significantly
outperform the serial codes MA42 and MA48. Larger
test examples are needed for experiments on more than
eight processors; we would welcome being given access
to such data to perform further tests.

In this paper, we have presented HSL–MP42 timings
for runs performed on an Origin 2000, a two processor
Compaq machine, and a Cray T3E. The code can,
however, be run on any system with a Fortran 90
compiler and MPI available. In particular, a cluster of
workstations that can communicate using MPI could
be used. Results reported by Duff & Scott (1994b)
illustrate that this kind of approach can be very effec-
tive. When working in a network-based environment, it
is important to consider how the matrix data is input to
the code and where the matrix factors are stored. For
efficiency, the amount of data movement between pro-
cesses needs to be minimised. Because of this, HSL–

J.A. Scott / Computers and Chemical Engineering 25 (2001) 1699–1709 1709

HSL (2000) A collection of Fortran codes for large scale scientific
computation. Full details from http://www.cse.clrc.ac.uk/Activity/
HSL .

Hu, Y. F., Maguire, K. C. F., & Blake, R. J. (2000). A multilevel
unsymmetric matrix ordering for parallel process simulation.
Computers in Chemical Engineering, 23, 1631–1647.

Mallya, J. U., & Stadtherr, M. A. (1997). A multifrontal approach
for simulating equilibrium-stage processes on supercomputers.
Industrial Engineering Chemical Resource, 36, 144–155.

Mallya, J. U., Zitney, S. E., Choudhary, S., & Stadtherr, M. A.
(1997). A parallel block frontal solver for large scale process
simulation: reordering effects. Computers in Chemical Engineering,
21, S439–S444.

MPI (1994) A message-passing interface standard. International Jour-
nal of Supercomputer Applics, 8. Special edition on MPI.

Scott, J. A. (1999). A new row ordering strategy for frontal solvers.
Numerical Linear Algebra Applications, 6, 1–23.

Scott, J. A. (2000). Row ordering for frontal solvers in chemical
process engineering. Computers in Chemical Engineering, 24,
1865–1880.

Scott, J. A. (2001). Two-stage ordering for unsymmetric parallel
row-by-row frontal solvers. Computers in Chemical Engineering,
25, 323–332.

Zang, W. P., & Liu, E. M. (1991). A parallel frontal solver on the
Alliant. Computers Structures, 38, 202–215.

Zitney, S. E., & Stadtherr, M. A. (1993). Frontal algorithms for
equation-based chemical process flowsheeting on vector and par-
allel computers. Computers in Chemical Engineering, 17, 319–338.

Zitney, S. E., Brull, L., Lang, L., & Zeller, R. (1995). Plantwide
dynamic simulation on supercomputers. American Institute of
Chemical Engineering Symposium Series, 91, 313–316.

Zone, O., & Keunings, R. (1991). Direct solution of two-dimensional
finite element equations on distributed memory parallel comput-
ers. In M. Durand, & F. E. Dabaghi, High Performance Comput-
ing. Elsevier Science Publications.

