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Abstract

The row-by-row frontal method may be used to solve general large sparse linear systems of equations. By partitioning the
matrix into (nearly) independent blocks and applying the frontal method to each block, a coarse-grained parallel frontal algorithm
is obtained. The success of this approach depends on preordering the matrix. This can be done in two stages, (1) order the matrix
to bordered block diagonal form; (2) order the rows within each block to minimize the size of the frontal matrix. A number of
recent papers have considered stage 1. In this paper, an algorithm is proposed for stage 2. For a range of practical examples from
chemical process engineering, it is shown that the proposed algorithm substantially reduces the block frontal matrix size and, for
sufficiently large problems, this can lead to significant reductions in the factorization times when the row-by-row frontal method
is implemented in parallel. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The frontal method is often used for solving the large
sparse systems of linear equations that arise in large-
scale chemical process simulation and optimization
problems. One reason for this is that the frontal
method can be used to solve any general sparse linear
system, because it does not require the system matrix to
have any special structural or numerical properties such
as symmetry, positive definiteness, diagonal dominance,
or bandedness. As process simulation matrices possess
none of these desirable properties, the choice of suitable
solvers is restricted.

The frontal method is able to achieve good perfor-
mance on a wide range of modern computer architec-
tures (including RISC based processors and shared
memory parallel processors) through the exploitation of
dense linear algebra kernels in the innermost loop of
the factorization. However, a major deficiency of the
method is the lack of scope for parallelism beyond that
which can be obtained within the dense kernels. One
way of attempting to overcome this shortcoming is by

generalizing the method to the multiple front method
(Duff & Scott, 1994a,b).

The multiple front method uses a problem decompo-
sition corresponding to a bordered block diagonal ma-
trix and factorizes each of the diagonal blocks using the
frontal method. This can be done in parallel. The
solvers PFAMP and MP42 follow this approach.
PFAMP was developed by Cray Research and is spe-
cifically designed for process engineering problems. The
code and the algorithm it implements is described in
Mallya, Zitney and Stadtherr (1997a), Mallya, Zitney,
Choudhary and Stadtherr (1997b). The package MP42
of Scott (2001a) is a general multiple front code for
finite element problems and was developed using the
established frontal solver MA42 of Duff and Scott
(1996). Both PFAMP and MP42 require the user to
have preordered the matrix to bordered block diagonal
form. For good load balancing, it is desirable that the
diagonal blocks are of nearly equal size. In addition,
the blocks need to be as independent as possible (that
is, the interaction between the blocks through the num-
ber of columns that have entries in more than one
block should be kept as small as possible). In the
simulation and optimization of large-scale chemical
processes, the natural unit-stream structure may
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provide an ordering with little overlap between the
blocks. However, the blocks are likely to vary signifi-
cantly in size. Moreover, commercial simulators do
not always generate a matrix with a suitable block
diagonal form. A reordering algorithm is thus essen-
tial. Recently, a number of such algorithms have been
proposed for unsymmetric matrices. These include the
GPA-SUM algorithm of Camarda and Stadtherr
(1998) and the MONET algorithm of Hu, Maguire
and Blake (2000).

Having performed an appropriate reordering to
bordered block diagonal form, the efficiency of the
multiple front method depends on the assembly order
used by the frontal method within each block. This
requires a second stage of ordering and it is this row
ordering within the diagonal blocks that is of interest
to us. When investigating the potential of the multiple
front method for process simulation problems, Mallya
et al. (1997a) realized the need to order within the
blocks and conjectured that the performance of their
parallel multiple front solver PFAMP ‘may depend
strongly on the ordering of the rows within each
block’. However, Mallya et al. did not provide any
results to support this and in their work they made
no attempt to reorder the rows within the blocks.
The purpose of this paper is to illustrate the impor-
tance of having a good row ordering within each
block and to propose an algorithm for achieving such
an ordering.

This paper is organized as follows. In Section 2, we
recall key features of the row-by-row frontal method
and its generalization to the multiple front method.
In Section 3, we describe a row ordering algorithm
for use with the frontal method and look at how we
can extend the method so that it only orders a subset
of the rows of the matrix; this extension allows the
method to be used for ordering the rows within the
matrix blocks of the multiple front method. Numeri-
cal results for a range of test examples taken from
practical chemical process engineering problems are
presented in Section 4. Finally, in Section 5, some
concluding comments are made.

We remark that for problems arising from finite-el-
ement applications, the diagonal blocks have a sym-
metric structure and an appropriate ordering
algorithm for the elements within each block has been
developed by Scott (1996).

2. Background

In this section, we briefly recall the row-by-row
frontal method and its generalization to the multiple
front method.

2.1. Frontal method

Consider the linear system of equations

Ax=b, (2.1)

where the n×n matrix A is large and sparse, and the
right-hand side vector b and solution vector x are of
length n. The frontal method is a variant of Gaussian
elimination that was originally developed in the 1970s
for the solution of finite-element problems in which A is
a sum of elemental matrices (see Irons, 1970; Hood,
1976). The original motivation was the need to solve
problems from finite-element applications that were
large by the standard of the day using only the limited
amount of high-speed memory then available. This was
achieved by limiting the computational work to a rela-
tively small matrix, termed the frontal matrix. The
method was subsequently extended to the solution of
general sparse linear systems by Duff (1981, 1984).
When the method is used for a general system, we refer
to it as the row-by-row frontal method (and, to distin-
guish it from the multiple front approach, we also refer
to it as the unifrontal method). Today the method is
widely used on vector supercomputers because, by
treating the frontal matrix as a full matrix, most of the
arithmetic operations can be performed using highly
efficient vectorized dense kernels.

At each stage, the row-by-row frontal method com-
prises the following steps.
� Assemble a row of A into the frontal matrix.
� Determine if any columns are fully summed. Column

l is defined as being fully summed once the last row
with an entry in column l has been assembled.

� If there are any fully summed columns, perform
partial pivoting in those columns, eliminating the
pivot rows and columns and performing an outer-
product update on the remaining frontal matrix.

� Optionally write the rows and columns of the matrix
factors generated by the eliminations to auxiliary
storage (for example, direct-access files).
In this way, the method proceeds by interleaving

assembly and elimination operations until, once all the
rows have been assembled and the final eliminations
performed, a decomposition of a permutation of A is
computed, that is,

PAQ=LU

where L is unit lower triangular and U is upper triangu-
lar. The system Eq. (2.1) can then be solved by a simple
forward substitution,

Ly=Pb,

followed by a backsubstitution

Uz=y.

The required solution
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x=Qz

follows.
Since a variable can only be eliminated after its

column is fully summed, the order in which the rows
are assembled will determine both how long each vari-
able remains in the front and the order in which the
variables are eliminated. For the row-by-row frontal
method to be efficient, both in terms of storage and
arithmetic operations, the rows need to be assembled in
an order that keeps both the row and column frontsizes
as small as possible. In recent years, a number of
algorithms for automatically ordering the rows of A
have been proposed. These methods are reviewed by
Scott (2000). The most successful methods currently
available are the MSRO methods of Scott (1999b),
which we discuss in Section 3.1.

2.2. Multiple front method

The multiple front method is a coarse-grained paral-
lel approach in which the frontal method is applied
simultaneously to multiple independent or loosely con-
nected blocks. For the unsymmetric case, the matrix
must first be ordered to singly bordered block diagonal
form
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, (2.2)

where the rectangular diagonal blocks All are ml×nl

matrices with ml]nl, and the border blocks Cl are
ml×kl. This ordering needs to be chosen so that kl�nl.
A partial LU decomposition is performed on each of
the matrices

(All Cl) (2.3)

using the frontal method. This can be done in parallel.
As the rows of Eq. (2.3) are assembled, nl variables
become fully summed. These variables correspond to
the columns of All ; the columns of Cl do not become
fully summed because they have entries in at least one
other border block Cj ( j" l). The fully summed vari-
ables may be eliminated, using partial pivoting to en-
sure numerical stability. Because the All are, in general,
rectangular, at the end of the assembly and elimination
processes, for each block there will remain a frontal
matrix Fl of order (ml−nl)×kl. The variables that
remain in the front are termed the interface 6ariables
and

F= %
N

l=1

Fl (2.4)

is the interface matrix. The interface matrix F may also

be factorized using the frontal method. Once the inter-
face variables have been computed, the rest of the block
back-substitution can be performed (in parallel) to
complete the solution.

Provided the rows of A have been ordered so that
there is limited interaction between the blocks, the size
of the interface problem will be very small compared
with the overall problem size. In this case, the solution
time will be dominated by the most expensive block LU
decomposition. The problem of obtaining a bordered
block form with (approximately) equal diagonal blocks
and a small interface has been addressed in a number of
recent papers (see, for example, Camarda & Stadtherr,
1998; Hu et al., 2000). In this study, we use the
MONET code of Hu et al. (2000) to generate the block
form Eq. (2.2).

3. Row ordering within blocks

In this section, we recall the MSRO algorithm for
reordering all the rows of a sparse unsymmetric matrix
for use with a row-by-row frontal solver and look at
how it may be extended to obtain orderings for the
multiple front algorithm.

3.1. The MSRO algorithm

The MSRO method of Scott (1999b) is an algorithm
for ordering the rows of an unsymmetric matrix A. The
algorithm has its origins in the work on profile reduc-
tion of Sloan (1986). It involves selecting a global row
ordering and then refining this global row ordering to
obtain a row reordering for A. The algorithm uses the
row graph of A. Row graphs were originally introduced
by Mayoh (1965). The row graph GR of A is defined to
be the undirected graph of the symmetric matrix B=
A*AT, where * denotes matrix multiplication without
taking cancellations into account (so that, if an entry in
B is zero as a result of numerical cancellation, it is
considered as a nonzero entry and the corresponding
edge is included in the row graph). The nodes of GR

correspond to the rows of A and two rows i and j
(i" j ) are adjacent if and only if there is at least one
column k of A for which aik and ajk are both nonzero.
Row permutations of A correspond to relabeling the
nodes of the row graph.

The chosen global ordering is used by the MSRO
algorithm to define the global priority of each row. The
row with the highest global priority is chosen as the
start row (that is, the row that is first in the global
ordering is ordered first in the new ordering). In the
second phase of the MSRO algorithm, the global order-
ing is used to guide the reordering, with rows having a
low global priority being chosen towards the end of the
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ordering. Examples of global orderings used by Scott
(1999b) are the pseudodiameter of GR (also used by
Sloan, 1986) and the spectral ordering for GR (see
Kumfert & Pothen, 1997).

A row is defined to be acti6e if it has not yet been
reordered but is adjacent in the row graph to a row that
has already been reordered. The MSRO algorithm aims
to reduce the row and column frontsizes within the
frontal method by reducing the number of rows that
are active at each stage of the method. This is achieved
by a local reordering (or refinement) of the global
ordering. For each row i, the MSRO algorithm com-
putes the priority function

Pi= −W1 rcgaini−W2 gi. (3.1)

Here W1 and W2 are positive weights; gi is the
(positive) global priority for row i ; and rcgaini is the
sum of the increases to the row and column frontsizes
resulting from assembling (ordering) row i next. A first
pass through the rows counts how many times each
column index appears. Assembling a row into the fron-
tal matrix causes the row frontsize to either increase by
one, to remain the same, or to decrease. The row
frontsize increases by one if each column index appears
in at least one of the rows that has not yet been
assembled, it remains the same if a single column index
appears for the last time, and it decreases if more than
one column appears for the last time. The increase in
the column frontsize is the difference between the num-
ber of column indices that appear in the front for the
first time and the number that appear for the last time.
If this difference is negative, the column frontsize de-
creases. Hence, if si is the number of column indices
that appear for the last time when row i is assembled,
and newci is the number of column indices that enter
the front for the first time, then

rcgaini=1+newci−2si. (3.2)

This is small when assembling row i brings a small
number of new columns into the front but results in a
large number of columns appearing for the final time.

The start row is ordered first then, at each stage, the
next row in the ordering is chosen from a list of eligible
rows to maximize Pi. The eligible rows are the active
rows plus their neighbors. A list of eligible rows is
maintained using the connectivity lists for the row
graph. Thus, the MSRO algorithm attempts to keep a
balance between having only a small number of rows
and columns in the front and including rows that have
a high global priority. The balance is determined by the
choice of weights. On the basis of extensive numerical
experimentation, Scott (1999b) recommends using two
sets of weights and choosing the better order. Scott uses
the pairs (2,1) and (32,1) if the global priority is a
pseudodiameter of the row graph and (1,2) and (32,1) if
the spectral ordering is used. Throughout the remainder

of this paper, we use a pseudodiameter of the row
graph to define gi and, unless stated otherwise, the
weights used are the default pairs (2,1) and (32,1).

Reid and Scott (2001) have shown that the maximum
and mean column frontsizes are invariant if a given row
order is reversed. However, the maximum and mean
row frontsizes and the mean frontal matrix size are, in
general, different if the given order is reversed. Numer-
ical experimentation has shown that, for some exam-
ples, the mean frontal matrix size can be significantly
reduced by reversing a given row order while for other
examples, the converse is true. Thus, the MSRO al-
gorithm computes an ordering as described above and
calculates the mean frontal matrix sizes for this order-
ing and for the reverse ordering; the ordering for which
the mean frontal matrix size is the smallest is then
selected as the MSRO ordering.

We remark that although the MSRO algorithm was
designed for ordering the rows of a square matrix,
because the algorithm orders the nodes of the row
graph and the row graph is defined for any m×n
matrix, it may also be used to order the rows of a
rectangular matrix. In the next section, we discuss how
we can generalize the method to order the rows in the
rectangular blocks of the block diagonal matrix given
by Eq. (2.2).

3.2. A two-stage approach

A two-stage approach to row ordering for a parallel
frontal solver comprises the stages.
1. Preorder the matrix to block diagonal form (Eq.

(2.2)).
2. Reorder the rows within each block matrix

(All Cl).
As already mentioned, stage 1 can be performed

using, for example, the MONET algorithm of Hu et al.
(2000). Our interest lies in stage 2. The simplest ap-
proach (which we will refer to as the MSRO(1) method)
is to apply the MSRO algorithm directly to each block
matrix (All Cl). However, the MSRO algorithm is
designed to reorder all the rows of a matrix. Thus,
when choosing which row to order next, it is assumed
that when any column index appears for the last time,
the column is fully summed and so can be eliminated. If
we apply the MSRO algorithm to (All Cl) this as-
sumption will not be valid for columns belonging to the
border Cl. Consequently, during the factorization of the
block, the elimination order predicted by the MSRO
ordering must be modified and, as interface variables
cannot be eliminated, the frontsize will increase beyond
that predicted. If the interface variables are brought
into the front early in the ordering because their rows
have a high priority Pi, this will lead to a large number
of additional operations being performed as well as a
need for more memory.
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An alternative approach is to apply the MSRO al-
gorithm only to the matrix All. If we do this, then when
the frontal method is applied to (All Cl), the row
frontsize at each stage will be as predicted by the
MSRO algorithm but the column frontsize will increase
by up to kl, where kl is the number of columns of Cl

with at least one entry. This suggests that this approach
will work well provided the number of interface vari-
ables is small compared with the number of non-inter-
face variables. We will denote this method by
MSRO(2).

A third approach is to modify the second step of the
MSRO algorithm so that, when applied to (All Cl),
the columns within the border Cl are recognised as not
being fully summed and so are not removed from the
frontal matrix. When implementing the MSRO al-
gorithm, the initial priority of the ith row in (All Cl) is
given by

Pi= −W1(1+ leni)−W2gi, (3.3)

where leni is the number of entries in row i. As each
row i is assembled, the priority of each of its neighbors
j is updated in two phases as follows.
1. For each column index k that appears for the first

time in row i with aik and ajk nonzero,

Pj�Pj+W1. (3.4)

2. For each column index k that appears for the last
time in row i with aik and ajk nonzero,

Pj�Pj+2W1 (3.5)

If All has ml rows and we flag each column with a
second nonzero entry in Cl as appearing for the final
time in row ml+1, no updates of the form (Eq. (3.5))
will be made for these columns. Thus each row j that
has nonzero entries in Cl will have a lower priority

value than it would otherwise have had and hence the
selection of such rows will be delayed. We will denote
this method by MSRO(3).

A weakness of approach MSRO(3) is that, when
selecting the next row to assemble, it does not distin-
guish between the interface and non-interface variables
within the rows. We can modify the method further to
allow for this. We do this by replacing the priority
function (Eq. (3.1)) for row i with the following priority
function

Pi= −W1rcgaini−W2gi+W3noldi, (3.6)

where W3 is another (positive) weight and noldi is the
number of non-interface variables in row i that have
already been introduced into the front. Initially, noldi=
0. As rows are assembled, noldi increases, so that rows
with a large number of non-interface variables already
lying in the front are given preference. This term acts as
a tie-breaker for, if two rows result in the same increase
to the frontal matrix and have the same global priority,
then the one that has the most non-interface variables
already in the front is selected. The aim here is to try
and ensure non-interface variables become fully
summed as soon as possible after they have entered the
front. We will denote this method by MSRO(3,W3)
(with MSRO(3,0)=MSRO(3)).

4. Numerical results

The test problems used in our numerical experiments
are listed in Table 1. Each problem comes from chemi-
cal process engineering. Problems marked with a † were
taken from the University of Florida Sparse Matrix
Collection (Davis, 1997). The remaining problems were
supplied by Mark Stadtherr of the University of Notre
Dame. The bayer problems are from the German chem-
ical industry. The ethylene problems arise from the

Table 1
The test problemsa

Identifier Number of entriesOrder Description

11 7704cols 43 668 9-Component plant with 4 interlinked distillation columns
29 496 109 588 9-Component plant with 10 interlinked distillation columns10cols
57 735bayer01† 277 774 German chemical industry process simulation

bayer03† 6747 56 196 German chemical industry process simulation
bayer04† German chemical industry process simulation159 08220 545

3083 21 216bayer09† German chemical industry process simulation
ethylene-1 10 673 80 904 Optimization of an ethylene plant

10 353ethylene-2 78 004 Optimization of an ethylene plant
75 724icomp 338 711 Dynamic plant simulation problem

1hr07c† 7337 156 508 Light hydrocarbon recovery process
1hr14c† 14 270 307 858 Light hydrocarbon recovery process

35 152 Light hydrocarbon recovery process1hr34c† 764 014
70 304 Light hydrocarbon recovery process1hr71c† 1528 092

a † Indicates problem taken from University of Florida Sparse Matrix Collection.
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Table 2
The mean frontal matrix size ( favg) for different variants of the MSRO algorithma

InterfaceBlock MSRO(3,W3) (defaultIdentifier MSRO (3,W3)MSRO(3)MSRO(2)MSRO(1)Initial
variables W3)

78 68 3454cols 5498 33961 3104 2840 2876
2238 219421542 78 83 183 3960 2464

2238 12031064120612103 30 50 435
909970.970955 919145 145304

5874 4493 3993 3802 383610cols 1 77 232 908
3608 3441 34412 76 450 245 4227 3447

3372 2455 2825 2762 27813 61 100 312
17961794 18021792258 60162 17964

4412934214 572120 39711bayer01 3362 3713
9005 6834 6884 65452 713565 42 068

4453412144433663603429 154693
7100 4133 4909 4755 47554 125 34 226
3313 3420 3352 3352 3474bayer03 1 65 4462

370332864119 2269 235785422 35
16703 957 104632 6827 3241 1123

3317 3431 29784 65 10 059 3462 2978
8853 75906885829110 660bayer04 1 81 49 818

13 03613 19314 02419 260 13 03665 2611922
7356 9982 61743 144 22 573 13 810 7278

68726872740415 10616 93033 1271994
3179 2195 1858 1731 1731bayer09 1 63 9167
2925 2855 2821 2813 28132 64 4156

25063099 19042697274071363 65
4710*5194 548081 59004 5235

48 928 14 363 48 818 4648ethylene-1 69611 50 134 203
873 1190 11832 60 4183 1683 1183

5733 5072 5723 4207 81173 56 14 489
2147* **272448 57684

421*384330 *1ethylene-2 752 *
2719 12 999 52202 83 21 480 9566 7170

48 593 15 823728148 450*3 52 85 351
6000*** 14 66518 727454

3265 3321 3258 3116 3141icomp 1 98 9772
5040 5006 50062 86 22 383 5006 5119

1623 1709 1626 1626 16983 65 47 070
18503178 2066209017 67351 18504

12 16022 96334 289126 10 58511hr07c 10 047 10 047
19 336 18 530 18 7302 218 31 283 26 692 21 055

19 60018 78619 97819 49230 46435 4191563
7204 5051 45414 94 17 598 17 578 4989

18 385 35 239 77451hr14c 1 164 59 792 40 184 29 576
20 453 21 118 12 666 12 658 12 6582 212 79 449

14 22427 085 15 86816 672 13 73632 0683 142
11 6414 11 72892 48 389 22 145 14 349 13 933

29 286 23 579 28 954 21 4421hr34c 1 221 27 85469 322
54 472 23 19222 69429 79430 6652 161 67 257

44 68255 64046 35759 575 45 992128 5112533
16 810 15 289 15 2894 194 52 182 44 410 28 689

53 28550 44256 00747 15063 3591hr71c 97 3122921
57 443 59 848 40 513 35 6652 188 38 176172 738

* 77 739 85 713 58 2023 384 66 548104 890
42 12551 980118 920152 902 40 4812864 44 441

a The smallest values and those within 2 per cent of the smallest are highlighted. * Indicates favg not improved by reordering.

optimization of an ethylene plant. Each problem in-
volves a flowsheet of 43 units, including five distillation
columns. The problems differ in the number of stages in
the distillation columns. The 1hr problems are derived
using a chemical process simulator and are based on a

light hydrocarbon recovery process. The larger prob-
lems involve more chemical species and/or more chemi-
cal processing units.

The reported numerical results were all obtained on
the SGI Origin 2000 at Manchester, UK. The MONET
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code was used to order the matrix to singly bordered
block diagonal form (Eq. (2.2)).

In Table 2, we compare the performance of the
different variants of the MSRO algorithm introduced in
the previous section. In each case, we have chosen the
number of blocks to N=4. The comparison is based on
the mean frontal matrix size favg within each block,
which is defined to be

favg=
1
nl

%
nl

1

( frowi * fcoli) (4.1)

where frowi and fcoli denote the row and column front-
sizes before the ith elimination in the matrix block (nl is
the number of columns in the block). Note that favg nl

provides a prediction of the number of floating-point
operations that must be performed by the frontal solver
to (partially) factorize the matrix block (assuming zeros
within the frontal matrix are not exploited).

We see that, in general, applying the MSRO al-
gorithm directly to the matrix block (All Cl) (ap-
proach MSRO(1)) substantially reduces the initial mean
frontal matrix size (that is, the frontsize of the block
resulting from the use of the MONET algorithm).
However, in the majority of cases, it is better to apply
the MSRO algorithm only to All (approach MSRO(2)).
This is because, for our test examples from chemical
process engineering, the MONET code is successful in
producing partitionings of the original problem that
have only a small number of interface variables com-
pared with the order of the problem. If we modify the
MSRO algorithm to recognize interface variables
(MSRO(3)) then in about half the cases, we are able to
reduce favg further. By introducing a third term into the
priority function (MSRO(3,W3)) we obtain the smallest
mean frontal matrix sizes for most of the test examples.

We have performed experiments using a range of
values for W3. With (W1,W2)= (2,1) and (32,1), we set
W3 in turn to 0.0, 0.167, 0.2, 0.5, 1.0, and 1.5. The
results given in column 8 of Table 2 are the best results
obtained using this range of values for W3. Our experi-
ence is that some problems are sensitive to the choice of
W3 while for others, the precise choice for W3 is less
important. Based on our experiments, we have chosen
the default value for W3 to be 0.2; this choice was used
to give the results in column 9. Although this value
often gives mean frontal matrix sizes that are close to
the best we have computed, we see that for some
problems, including ethylene-2, it may be worthwhile to
try different choices for W3 before selecting the final
ordering to present to the frontal solver.

In Figs. 1–3 we show the sparsity pattern for prob-
lem bayer04 using the initial supplied ordering, after it
has been reordered to bordered block diagonal form,
and after the MSRO(3,W3) algorithm has been used to
reorder the rows within the blocks. This clearly illus-

trates the effectiveness of MSRO(3,W3) in reducing the
frontsize within the diagonal blocks.

In Table 3 we present timings for factorizing the
matrix A using a new parallel row-by-row frontal solver
MP43; see Scott (2001b) for details. In each case,

Fig. 1. Problem bayer04 with original ordering.

Fig. 2. Problem bayer04 in bordered block diagonal form.

Fig. 3. Problem bayer04 after reordering with MSRO(3,W3).
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Table 3
Factorization timings for a parallel frontal solver with and without ordering of the rows within the blocks

2 processorsIdentifier 4 processors

No ordering MSRO(3,W3) MSRO(3,W3)No ordering
orderingordering

0.48 0.110.190.734cols
3.93 0.4710cols 2.91 0.27

bayer01 1.80 1.31 1.08 0.77
bayer03 0.17 0.12 0.09 0.08

0.88 0.58bayer04 0.52 0.33
0.08 0.08 0.05 0.05bayer09
0.39 0.27ethylene-1 0.36 0.19

ethylene-2 0.36 0.23 0.33 0.16
0.661.161.36icomp 2.05

0.48 0.451hr07c 0.33 0.33
1hr14c 1.00 1.00 0.58 0.50
1hr34c 2.86 2.65 1.69 1.88

6.55 6.461hr71c 3.88 3.84

In each case, the MONET code was again used to
partition the matrix into four blocks and runs were
performed using two and four processors. Results are
given both for no ordering of the rows within the
blocks and for reordering using the MSRO(3,W3) ap-
proach. Wallclock times are given in seconds and are
the minimum times over ten runs. We see that, for the
large test problems of order greater than 10 000, re-
ordering the rows can lead to substantial savings in the
time required for the matrix factorization (notably,
problems 4cols, l0cols, and icomp). However, the sav-
ings are not always as large as the reductions in the
frontal matrix size might lead us to expect. This is
because the frontal solver is able to take advantage of
some zeros in the frontal matrix and does not, in fact,
treat the frontal matrix as completely dense. This can
lessen the effect of a poor ordering. For the smaller
problems, although the MSRO(3,W3) algorithm gener-
ally reduces the frontal matrix size considerably (Table
2), these reductions do not lead to large savings in the
factorization times. There are a number of reasons, we
believe, for this. Again, there is the exploitation by the
frontal solver of zeros in the front. Secondly, for our
test problems, the number of interface variables result-
ing from the MONET ordering appears to be largely
independent of the problem size and so, for the smaller
problems, the solution of the interface problem (which
is independent of whether or not the rows within the
blocks are reordered) accounts for a larger proportion
of the total solution time. Furthermore, for the small
problems, the amount of data movement between pro-
cessors is high compared with the computation per-
formed by each processor. If the rows are poorly
ordered, more operations may be performed on each
subdomain than if the rows are well ordered but, in

each case, the data movement between processors is the
same.

When the number of processors is equal to the
number of matrix blocks, the factorization time is
determined by the slowest block matrix factorization
time. It is, therefore, important that the subdomains are
well balanced. The MONET code produces matrix
blocks with an (almost) equal number of rows but, as
shown in Table 2, the average frontal matrix size on
each of the blocks can vary substantially. Reordering
the rows can help reduce this imbalance. For example,
for problem l0cols, before reordering, favg for block 2 is
more than four times that for block 3 while the time for
factorizing block 2 is more than three times that for
block 3. However, after reordering, these two blocks
have similar average frontal matrix sizes and compara-
ble factorization times.

Table 4
The mean frontal matrix size ( favg *102) for original ordering and for
the MSRO reordering algorithm with and without the third term

Original W3=0Identifier W3=0.2

2218 214cols 30
7091 39 2810cols

180 194bayer01 1183
200 26bayer03 24

1611911bayer04 342
17 16bayer09 249

3910 566ethylene-1 1452
451 2818ethylene-2 494

1217 73icomp 81
521 621hr07c 49

1661531hr14c 1076
1499 2831hr34c 232
1548 8351hr71c 449
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Table 5
Factorization timings for the unifrontal and multiple front codes

1 processorIdentifier 2 processors 8 processors4 processors
(8 blocks)(4 blocks)(2 blocks)(unifrontal)

0.424cols 0.18 0.11 0.09
0.49 0.27 0.1810cols 1.16
1.53 0.773.56 0.42bayer01
0.11 0.08bayer03 0.080.20
0.71 0.331.11 0.25bayer04

0.08bayer09 0.05 0.05 0.05
1.48 0.193.91 0.09ethylene-1

3.64ethylene-2 0.49 0.16 0.13
1.04 0.66icomp 0.311.97
0.33 0.330.38 0.381hr07c
0.67 0.50 0.481hr14c 1.03
2.05 1.88 1.473.231hr34c

4.1. A note on ordering for the unifrontal code

In Section 3.2, we introduced a third term into the
priority function to give Eq. (3.6). This third term can
also be included if we are ordering the rows of the
whole matrix A for use with a frontal solver (that is, for
a unifrontal code). In this case, all the variables are
non-interface variables and so noldi reduces to the
number variables in row i that are already in the front.
In Table 4, we present the mean frontal matrix size for
the original matrix ordering and for the MSRO al-
gorithm with and without this third term (again, we use
W3=0.2). We see that, in many of our test cases, we
are able to reduce the mean frontal matrix size through
the inclusion of the additional term. In a number of
cases, the improvements are significant, notably for
problems bayer04, ethylene-1, and 1hr7ic.

4.2. A comparison of the unifrontal and multiple front
codes

In Table 5, we compare the factorization times for
the unifrontal code MA42 of Duff & Scott (1996) run
on a single processor with those for the multiple front
code run on two, four, and eight processors. In each
case, the number of blocks N was chosen to be equal to
the number of processors. For both the unifrontal and
multiple front code, the rows of the matrices were
preordered using the MSRO algorithm with W3=0.2.
We see that it is clearly advantageous to use the multi-
ple front approach with at least two processors. For the
smaller problems (fewer than about 10 000 variables),
we do not get an improvement in performance by using
more than two processors. This is because, as the
number of blocks increases, there is less work to done
on each block and the factorization time becomes dom-
inated by the time required to solve the interface prob-

lem. However, for the largest problems, notably
bayer01 and icomp we get speedups of about 2 as we
double the number processors to four and to eight (see
Fig. 4). We tried running these problems with 16 blocks
on 16 processors but the times increased. We conclude
that the multiple front approach is suitable for use on a
small number of processors and that more processors
should be used for larger problems.

5. Concluding remarks

In this paper, we have taken an unsymmetric matrix
that has been ordered to bordered block diagonal form
and extended the MSRO row ordering algorithm to
order the rows within each of the blocks. The resulting
orderings have been used with a parallel frontal solver.
We have shown that it is possible to substantially

Fig. 4. Factorization times for bayer01 (*) and icomp (+ ) on one,
two, four, and eight processors.
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reduce the size of the frontal matrix on the blocks, and
this can in turn result in significant speed-ups in the
frontal solver. The best orderings were obtained by
explicitly taking into account the columns that are not
fully summed within the block. A Fortran code imple-
menting the MSRO(3,W3) algorithm has been devel-
oped and is available as part of the latest release of the
HSL subroutine library (HSL, 2000); for further details,
please contact the author. Our unifrontal and parallel
row-by-row frontal solvers are also included in HSL
2000 as routines MA42 and MP43, respectively. MP43
is written in Fortran 90 and, for portability, employs
MPI for message passing. We are currently investigat-
ing the performance of this new code and comparing it
with other sparse solvers that are also designed for
unsymmetric systems.

An additional outcome of this study is that, through
the use of a third term in the priority function, we have
improved the MSRO algorithm for ordering all the
rows of a matrix.
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