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SUMMARY

The solution of large sparse linear systems of equations is one of the cornerstones of scienti�c compu-
tation. In many applications it is important to be able to solve these systems as rapidly as possible. One
approach for very large problems is to reorder the system matrix to bordered block diagonal form and
then to solve the block system using a coarse-grained parallel approach. In this paper, we consider the
problem of e�ciently ordering unsymmetric systems to singly bordered block diagonal form. Algorithms
such as the MONET algorithm of Hu et al. (Comput. Chem. Eng. 23 (2000) 1631) that depend upon
computing a representation of AAT can be prohibitively expensive when a single (or small number of)
matrix factorizations are required. We therefore work with the graph of AT + A (or BT + B, where B
is a row permutation of A) and propose new reordering algorithms that use only vertex separators and
wide separators of this graph. Numerical experiments demonstrate that our methods are e�cient and
can produce bordered forms that are competitive with those obtained using MONET. Copyright ? 2005
John Wiley & Sons, Ltd.
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1. INTRODUCTION

One possible approach to the problem of rapidly solving very large sparse n× n linear systems
of equations

Ax= b
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is to partition A into a number of loosely connected blocks and then apply an e�cient sparse
direct solver to the blocks in parallel. Solving the interface problem that connects the blocks
completes the solution. The recent solvers HSL MP43 [1] and HSL MP48 [2] from the HSL math-
ematical software library [3] employ this technique for solving unsymmetric systems. To use
these codes, the matrix A must be preordered to singly bordered block diagonal (SBBD) form

⎛
⎜⎜⎜⎜⎜⎜⎝

A11 C1

A22 C2

: : : :

ANN CN

⎞
⎟⎟⎟⎟⎟⎟⎠

(1)

where, for l=1; 2; : : : ; n, the rectangular blocks on the diagonal All are ml × nl matrices with
ml¿ nl, and the border blocks Cl are ml × k with k � nl.

HSL MP43 uses the frontal solver MA42 [4] to perform a partial LU factorization of the diag-
onal blocks, while HSL MP48 employs a modi�ed version of the well-known general purpose
sparse direct solver MA48 [5]. The interface problem is solved on a single processor using
MA42 and MA48, respectively. Experimentation on a number of di�erent parallel platforms has
demonstrated that both HSL MP43 and HSL MP48 can be signi�cantly faster than their serial
counterparts when the number N of blocks is small (typically in the range 4–16). In par-
ticular, the codes have been used to successfully solve highly unsymmetric linear systems
arising from chemical process engineering applications [1, 2]. However, the e�ectiveness of
the approach is dependent upon being able to obtain e�ciently a SBBD form in which the
blocks are of a similar size and, most importantly, the number of columns k in the border is
small compared to n, the order of A. This is because the interface problem, which is generally
denser than the original matrix, is currently solved using a serial solver and so it needs to
be small enough that its solution does not cause a bottleneck within the parallel solver. The
ordering to SBBD form itself is also performed sequentially.
The problem of reordering chemical process engineering problems to SBBD form has been

addressed by the MONET algorithm of Hu et al. [6]. HSL o�ers an implementation of the
MONET algorithm as routine HSL MC66. This code was used by Du� and Scott for preordering
in their experiments with HSL MP43 and HSL MP48. They found that, for highly unsymmetric
problems, HSL MC66 produces well-balanced SBBD forms (each submatrix All, l=1; 2; : : : ; N ,
has a similar number of rows) and, for up to 8 submatrices, the border typically represents less
than 5% of the total number of columns. However, in terms of CPU time, the MONET algo-
rithm is relatively expensive. In general, the CPU cost of ordering A to SBBD form was found
to be signi�cantly greater than the cost of the analyse phase of the direct solver on the diago-
nal blocks and, for some problems, it can dominate the total solution time. Clearly, if a large
number of matrices with the same sparsity pattern are to be factorized, the ordering cost may
be justi�ed as it can be amortized over the repeated factorizations. But in some applications
only a single factorization is required and it may then be essential for the ordering to SBBD
form to be performed rapidly so that it does not represent an unacceptable overhead. This is
especially important if (as with HSL MC66) the ordering is performed using a single processor.
A key reason why the MONET algorithm is expensive is because it works with the sparsity

pattern of AAT. More precisely, it applies a multilevel recursive bisection algorithm combined
with Kernighan–Lin re�nement to the row graph GAAT of A. Computing and working with
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the pattern of AAT is costly, because AAT may contain many more non-zero entries than A,
particularly when A contains one or more relatively dense columns. Thus we would like to
derive a cheaper algorithm that avoids computing AAT (and ATA) but produces SBBD forms
of similar quality to those obtained using the MONET algorithm.
Our starting point is the recent paper of Brainman and Toledo [7] on ordering the columns

of sparse unsymmetric matrices to reduce �ll-in during sparse LU factorizations with partial
pivoting. George and Ng [8] showed that for every row permutation P, the �ll of the LU
factors of PA is essentially contained in the �ll of the Cholesky factor of ATA. Furthermore,
for a large class of matrices, for every entry in the Cholesky factor of ATA there is a pivot
sequence P that causes that entry of U to be non-zero [9]. Thus, unsymmetric direct solvers
are often used to preorder the columns of A using a permutation Q that attempts to reduce
the �ll in the Cholesky factor of QTATAQ. The main challenge is to �nd a �ll-minimizing
permutation without computing ATA or its sparsity pattern. One approach to this problem is
the column approximate minimum degree ordering algorithm (COLAMD) of Davis et al. [10].
Brainman and Toledo propose adopting an earlier idea of Gilbert and Schreiber [11]. Their
method �nds vertex separators in GATA by �nding wide separators in GAT+A. They present
some encouraging results which motivated us to consider whether a similar approach might
be used to order matrices A with an unsymmetric sparsity pattern to SBBD form more rapidly
than the MONET algorithm.
This paper is organized as follows. In Section 2, we introduce the test problems and com-

puting environment used for our numerical experiments. Basic concepts from graph theory and
some results on SBBD forms and wide separators are recalled in Section 3. In Section 4, we
consider how SBBD forms may be generated via wide separators in GAT+A then, in Section 5,
we propose computing SBBD forms directly from the vertex separators in GAT+A. Vertex sep-
arators are computed using the graph partitioning routine METIS PartGraphRecursive from
the well-known METIS package [12] and, in Section 6, using the nested dissection routine
METIS NodeND. Numerical results compare the proposed approaches with the MONET algo-
rithm. These show that the new algorithms are signi�cantly faster than MONET and, for
up to 8 blocks, for many of our test problems we obtain orderings that are competitive in
quality with the MONET orderings. The new orderings and the MONET orderings are used
in Section 7 with the parallel solver HSL MP48. We �nd that the overall cost of reordering
and then solving the linear system is often less for the new algorithms.

2. TEST PROBLEMS AND COMPUTING ENVIRONMENT

In this section, we introduce the test problems that will be used throughout this paper to
illustrate the performance of the ordering algorithms. For the coarse-grained parallel approach
to be e�cient, the test problems need to be reasonably large and so we have selected problems
that are all of order at least 10 000. In Table I ∗ (asterisk) indicates that the problem is
included in the University of Florida Sparse Matrix Collection [13]. The remaining problems
were supplied by Mark Stadtherr of the University of Notre Dame and Tony Garrett of
AspenTech, U.K. The symmetry index s(A) of a matrix A is de�ned to be the number of
matched non-zero o�-diagonal entries (that is, the number of non-zero entries aij, i �= j, for
which aji is also non-zero) divided by the total number of o�-diagonal non-zero entries. Small
values of s(A) indicate the matrix is far from symmetric while values close to 1 indicate an
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Table I. Test problems.

Identi�er n nz s(A) Description=application area

Matrix35640 35 640 146 880 0.0001 Chemical process engineering
bayer01∗ 57 735 277 774 0.0002 Chemical process engineering
icomp 75 724 338 711 0.0010 Chemical process engineering
Matrix32406 32 406 1035 989 0.0014 Chemical process engineering
lhr34c∗ 35 152 764 014 0.0015 Chemical process engineering
bayer04∗ 20 545 159 082 0.0016 Chemical process engineering
lhr71c∗ 70 304 1528 092 0.0016 Chemical process engineering
poli large∗ 15 575 33 074 0.0035 Account of capital links
4cols 11 770 43 668 0.0159 Chemical process engineering
10cols 29 496 109 588 0.0167 Chemical process engineering
onetone2∗ 36 057 227 628 0.1129 Harmonic balance method
ethylene-1 10 673 80 904 0.2973 Chemical process engineering
ethylene-2 10 353 78 004 0.3020 Chemical process engineering
Zhao2∗ 33 861 166 453 0.9225 Electromagnetics
scircuit∗ 170 998 958 936 0.9999 Circuit simulation
hcircuit∗ 105 676 513 072 0.9999 Circuit simulation
bcircuit∗ 68 902 375 558 1.0000 Circuit simulation
garon2∗ 13 535 390 607 1.0000 2D Navier–Stokes
pesa∗ 11 738 79 566 1.0000 Unknown
wang3∗ 26 064 177 168 1.0000 3D diode semiconductor device

n, nz denote the order of the system and the number of matrix entries, respectively. s(A) denotes the symmetry
index. Problems marked ∗ are available from the University of Florida Sparse Matrix Collection.

almost symmetric sparsity pattern. The test matrices are listed in order of increasing symmetry
index.
Note that a signi�cant proportion of our test problems originate from chemical process sim-

ulation. We chose these because they have a highly unsymmetric sparsity pattern and it is for
such problems that the HSL parallel solvers HSL MP43 and HSL MP48 and the ordering routine
HSL MC66 are primarily designed. We have, however, also included a number of problems
from a variety of other application areas, many of which have a greater degree of symmetry.
In particular, the problems towards the end of the table have unsymmetric values but have a
symmetric (or nearly symmetric) sparsity structure.
All numerical experiments presented in this paper were performed on a dual processor

Compaq DS20 Alpha server, with 3:6 GBytes of RAM. The Fortran codes were compiled
using the Compaq Fortran 90 compiler with the optimization �ag −O; C codes were compiled
using the Compaq cc compiler with the �ag −O4. Default settings were used for all HSL MC66,
HSL MP48, and METIS control parameters.

3. GRAPHS AND SEPARATORS

3.1. Graph notation and de�nitions

It is convenient to recall some basic concepts from graph theory.
A graph G is de�ned to be a pair (V; E), where V is a �nite set of vertices v1; v2; : : : ; vn,

and E is a set of edges, where an edge is a pair (vi; vj) of distinct vertices of V . If no distinction
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is made between (vi; vj) and (vj; vi) the graph is undirected. An ordering (or labelling) of a
graph G with n vertices is a bijection of {1; 2; : : : ; n} onto V . Two vertices vi and vj in V are
said to be adjacent (or neighbours) if (vi; vj)∈E. The edge (vi; vj) is incident to vertex vi and
to vertex vj. A path of length k in G is an ordered set of distinct vertices (vi1 ; vi2 ; : : : ; vik+1)
where (vij ; vij+1)∈E for 16 j6 k. Two vertices are connected if there is a path joining them.
An undirected graph G is connected if each pair of distinct vertices is connected. Otherwise, G
is disconnected and consists of two or more connected components.
A labelled graph G(A) with n vertices can be associated with any square matrix A= {aij}

of order n. Two vertices i and j (i �= j) are adjacent in the graph if and only if aij is non-zero.
If A has a symmetric sparsity pattern, G(A) is undirected.
Row and column graphs were �rst introduced by Mayoh [14]. The column graph GATA of A

is de�ned to be the undirected graph of the symmetric matrix AT ∗A, where ∗ denotes matrix
multiplication without taking cancellations into account (so that, if an entry is zero as a result
of numerical cancellation, it is considered as a non-zero entry and the corresponding edge is
included in the column graph). The vertices of GATA are the columns of A and two columns
i and j (i �= j) are adjacent if and only if there is at least one row k of A for which aki
and akj are both non-zero. The row graph GAAT is de�ned analogously as the undirected graph
of A∗AT. Column (row) permutations of A correspond to relabelling the vertices of the column
(row) graph.
A subset Es ⊂E of edges of an undirected graph G=(V; E) is an edge separator if removing

Es leaves G disconnected. Edges in the edge separator are called the cut edges. A subset S ⊂V
of vertices is a vertex separator (or attachment set) if the removal of S and its incident edges
disconnects an otherwise connected graph or connected component.
A vertex cover of a graph G=(V; E) is a subset of V , such that each edge in E is incident

to at least one vertex in the cover. The minimum vertex cover is the smallest such cover.

3.2. Separators and SBBD forms

Mayoh [14] showed that, given a vertex separator in the column graph GATA, the matrix can be
reordered to SBBD form. Suppose S is a vertex separator in GATA and let VC1; VC2; : : : ; VCN
be the subsets of columns of A that correspond to the N components of GATA once S
and its incident edges have been removed. Then each row of A has non-zero entries in
columns of at most one VCi and thus the columns of A can be ordered into SBBD form
as follows:

1. All the columns in the VCi are ordered before the columns corresponding to the vertices
in S.

2. For i¡j, all the columns in VCi are ordered before the columns in VCj.
3. For i¡j, a row with a non-zero entry in a column of VCi is ordered ahead of any row
with a non-zero entry in a column of VCj.

Thus, if we have a vertex separator in GATA, we can reorder A to the required form. However,
as already noted, computing ATA is expensive and we would like to �nd a vertex separator
without forming ATA or its sparsity pattern. One possible approach is to use wide separators,
a term coined by Gilbert and Schreiber [11]. If V1; V2; : : : ; VN are the subsets of the vertices
V corresponding to the N components of G=(V; E) after the removal of the vertex separator
S and its incident edges, any path between i∈Vk and j∈Vl (k �= l) must pass through at least
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one vertex in S. A vertex set is a wide separator if every path between i∈Vk and j∈Vl
passes through a sequence of two vertices in S (one after the other along the path).
Brainman and Toledo [7] give the following result.

Theorem 1
A wide separator in GAT+A is a vertex separator in GATA.
Moreover, if A is symmetric they also show the converse result.

Theorem 2
If A has a symmetric sparsity pattern with no zeros on the diagonal, then a vertex separator
in GATA is a wide separator in GAT+A.

4. COMPUTING SBBDS VIA WIDE SEPARATORS

Theorem 1 provides a means of computing a vertex separator in GATA without forming ATA;
the problem is reduced to computing a wide separator in the undirected graph GAT+A. If we
have an edge separator Es, a wide separator can be found by choosing the endpoints of each
edge in Es. Alternatively, a wide separator may be found by widening a vertex separator S.
In our numerical experiments, edge separators are computed using the well-known graph

partitioning code METIS of Karypis and Kumar [12] (see www-users.cs.umn.edu/∼karypis=
metis=index.html). In particular, we use the routine METIS PartGraphRecursive to partition
GAT+A into N parts using a multilevel recursive bisection algorithm. The objective of this par-
titioning is to minimize the number of edges that are cut by the partitioning. Vertex separators
may be extracted from the METIS output using Dulmage–Mendelsohn-type decompositions
([15]; see also Pothen and Fan [16]). Essentially, once an edge separator has been computed,
the bipartite graph induced by the cut edges is generated. A vertex separator then corresponds
to a minimum vertex cover in this bipartite graph (see, for example Ashcraft and Liu [17]
and the references therein).
The software that we use to postprocess the METIS output was provided by Mirek T�uma of

the Academy of Sciences of the Czech Republic. Assuming N =2k for some k, the T�uma code
is run k times, each time generating a minimum cover for the bipartite graph given by the
METIS edge separators. These k cover sets are then uni�ed to give the required vertex separa-
tor. For example, consider k=3. Denoting the partition numbers by 000; 001; 010; 011; : : : ; 111,
three separate vertex covers are computed based on the di�erence in individual bits in their
binary representations:

Partitions 000, 001, 010, 011 versus 100, 101, 110, 111.
Partitions 000, 001, 100, 101 versus 010, 011, 110, 111.
Partitions 000, 110, 010, 100 versus 001, 011, 101, 111.

Unifying these three vertex covers yields a vertex separator for the partitioned graph with 8
partitions.
Having obtained a vertex separator S in GAT+A, we need to widen it to a wide

separator Ws. Suppose the subset S ⊂V of vertices of an undirected graph G=(V; E) is a
vertex separator such that the removal of S and its incident edges breaks the graph into two
components G1 = (V1; E1) and G2 = (V2; E2). It is clear that the sets W1 = S ∪ {i|i∈V1; (i; j)∈E
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Figure 1. Figure illustrating that the union of the wide separators of bisections may not be a wide
separator with regard to the overall partition of the graph. The numbers in brackets are the subgraph

to which the vertex belongs after recursive bisection.

for some j∈ S} and W2 = S ∪ {i|i∈V2; (i; j)∈E for some j∈ S} are wide separators in G. In
other words, the vertex separator may be widened by adding to it all the vertices that are
adjacent to the separator in one of the subgraphs. In their paper, Brainman and Toledo [7]
select the smaller of W1 and W2 as their wide separator. We have performed experiments
using this choice but, in an attempt to obtain a smaller wide separator (and hence an SBBD
form with a narrower border), we propose the following method which widens S by adding
vertices from both V1 and V2.

Algorithm. Wide separator

Initialize Ws ⇐ S
For each vertex j∈ S
Let n1 (respectively, n2) be the number of neighbours of j that belong to V1 (respectively,
V2) but not to Ws.
If n16 n2 set Ws ⇐Ws ∪ {i|i∈V1; i =∈Ws; (i; j)∈E};
otherwise set Ws ⇐Ws ∪ {i|i∈V2; i =∈Ws; (i; j)∈E}.

Thus for each j∈ S we add up how many neighbours it has belonging to V1 that are not
already in Ws and, similarly, how many belong to V2 but not to Ws. We then add to the set
of vertices Ws the smaller of these two sets of neighbours. There is no guarantee that the
�nal wide separator computed in this way will be smaller than that obtained using the simpler
method of Brainman and Toledo but, as we shall see in our numerical experiments, in general
this approach does yield SBBD forms with narrower borders.
We note that when either the above algorithm or the Brainman and Toledo algorithm

is applied recursively to the subgraphs of bisections, the union of the wide separators of
each of the bisections need not be a true wide separator of the original graph. For example,
consider the graph G with eight vertices given in Figure 1. Assume that the �rst bisection
gives two subgraphs G1 and G2, with G1 having vertices {1; 6; 7; 8}, and G2 vertices {2; 3; 4; 5}.
A wide separator for this bisection is WS0 = {1; 6; 7}. G1 and G2 are then bisected again so
that each vertex belongs to one of the four subgraphs, as show by numbers in brackets
in Figure 1. A wide separator for the bisection of G1 is WS1 = {1; 6}, and the bisection
of G2 has a null wide separator WS2 = {}. However, the union of the three wide separators,
Ws =WS0 ∪WS1 ∪WS2 = {1; 6; 7}, is not a true wide separator with regard to the quadrasection,
because there is a path from vertex 2 (in domain 3) to vertex 4 (in domain 4), passing through
only one vertex (vertex 1) in Ws. This, however, does not happen very often in practice and
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Table II. The size of the border in the 8-block SBBD form computed using
wide separators in GAT+A.

Method

Identi�er n |S| I II III

Matrix35640 35 640 19 888 33 599 29 998 29 920
bayer01 57 735 12 264 19 342 18 609 17 280
icomp 75 724 289 427 401 441
Matrix32406 32 406 13 357 19 836 18 166 16 989
lhr34c 35 152 11 943 24 432 21 394 19 376
bayer04 20 545 6630 10 200 9939 9242
lhr71c 70 304 12 171 23 799 20 296 18 864
poli large 15 575 199 665 1386 695
4cols 11 770 305 524 498 477
10cols 29 496 343 536 536 485
onetone2 36 057 1981 3256 3897 2352
ethylene-1 10 673 308 705 737 628
ethylene-2 10 353 302 641 678 535
Zhao2 33 861 1435 3051 3059 3014
scircuit 170 998 449 1297 2071 1292
hcircuit 105 676 509 1482 4219 2595
bcircuit 68 902 279 632 702 631
garon2 13 535 756 2059 2059 2059
pesa 11 738 213 438 438 445
wang3 26 064 2544 5069 4912 4904

|S| denotes the size of the vertex separator.

can be easily remedied when ordering to SBBD form, by bringing the few o�ending columns
into the border.
In Table II we give the size of the border in the 8-block SBBD form obtained by computing

the wide separator in GAT+A using METIS followed by the three approaches discussed above,
namely:

I: choose both endpoints of each edge in the edge separator Es,
II: the method of Brainman and Toledo [7],
III: the above wide separator algorithm.

The smallest border (and those within 5% of the smallest) are highlighted in bold.
For comparison, the size |S| of the vertex separator computed using METIS PartGraph

Recursive and the T�uma software is given in column 3. We see that Method III usually
produces narrower borders than Method II and, although there are a number of problems
(notably hcircuit) for which Method I produces the narrowest border, Method III appears to
be the best method overall. However, we also observe that for some of the very unsymmetric
problems in the top half of the table, the size of the vertex separator and the border is large;
in particular, for problems Matrix35640 and Matrix32406 the percentages of the columns
lying in the border are 84 and 52%, respectively. For these problems, the border is too large
for the coarse-grained parallel approach discussed in Section 1 to be e�ective.
Theorem 2 tells us that for a symmetric matrix A, there is a one to one correspon-

dence between vertex separators in GATA and wide separators in GAT+A. Therefore we would
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expect that if A can be preordered to a more symmetric matrix B, then vertex separators
in GATA should be ‘captured’ better by wide separators in GBT+B (note that row and column
permutations do not change the graph GATA, other than vertex renumbering.) This leads us to
consider preordering A in an attempt to increase the symmetry index prior to ordering to SBBD
form.

4.1. Preordering using maximal matchings

It is well-known that matching orderings can increase the symmetry index of the resulting
reordered matrix, particularly in cases where A is very sparse with a large number of zeros on
the diagonal (see, for example Du� and Koster [18]). Permuting a large number of non-zero
o�-diagonal entries onto the diagonal reduces the number of unmatched non-zero o�-diagonal
entries, which in turn increases the symmetry index. Furthermore, if A is permuted to a
matrix B with a non-zero diagonal, the following theorem proves that every vertex separator
in GBTB is a vertex separator in GBT+B.
Theorem 3
If B has no zeros on the diagonal, then a vertex separator in GBTB is a vertex separator
in GBT+B.
Proof
Let S be a vertex separator in GBTB such that the removal of S and its incident edges breaks
the graph into N components. Let V1; V2; : : : ; VN be the subsets of the vertices corresponding
to the N components. Suppose for contradiction that S is not a separator in GBT+B. Then there
exists a path in GBT+B between i1 ∈Vk and j1 ∈Vl (k �= l) that does not pass through a vertex
in S. There must be a pair of adjacent vertices i and j along the path such that i∈Vk and
j∈Vl. Since i and j are adjacent in GBT+B, the (i; j) entry of BT + B is non-zero. Therefore,
either bij �=0 or bji �=0. Since bii �=0 and bjj �=0, it follows that (BTB)ij=

∑
q bqibqj is non-

zero. Thus (i; j) must an edge in GBTB and i ↔ j is a path in GBTB that does not pass through
S, a contradiction.

It can be shown by example that if B has an unsymmetric sparsity pattern with no zeros
on the diagonal, a vertex separator in GBTB is not necessarily a wide separator in GBT+B.
The HSL routine MC21 uses a relatively simple algorithm to compute a matching that

corresponds to a row permutation of A that puts non-zeros entries onto the diagonal, without
considering the numerical values. The method used by MC21 is a simple depth-�rst search with
look-ahead; the algorithm is described by Du� [19, 20]. In Table III, the symmetry index of
our test problems is given before and after reordering with MC21; we also give the number of
zero diagonal entries before permuting the matrix (in each case, there are no zero entries on
the diagonal after permuting). We omit the �nal four test examples from Table I because they
have a symmetric sparsity pattern with no zeros on the diagonal so that MC21 is not needed
(it returns the identity permutation).
In the remainder of our discussion, we let B=PA be the permuted matrix after employing

MC21. In Table IV, we show the size of the border in the 8-block SBBD form obtained by
computing the wide separator in GBT+B using Methods I, II and III. The best results (and those
within 5% of the best) are highlighted. Again, the �nal 4 test problems are not included. We
also omit poli large and Zhao2 because MC21 returns the identity permutation for these two
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Table III. Structural symmetry before and after permuting the rows of A using
the MC21 ordering.

Symmetry index

Identi�er n Diagonal zeros Before After

Matrix35640 35 640 35 639 0.0001 0.0427
bayer01 57 735 57 733 0.0002 0.0719
icomp 75 724 0 0.0010 0.0025
Matrix32406 32 406 32 366 0.0014 0.2643
lhr34c 35 152 35 050 0.0015 0.3294
bayer04 20 545 20 545 0.0016 0.0694
lhr71c 70 304 70 100 0.0016 0.3541
poli large 15 575 0 0.0035 0.0035
4cols 11 770 0 0.0159 0.0419
10cols 29 496 0 0.0167 0.0471
onetone2 36 057 26 967 0.1129 0.3600
ethylene-1 10 673 0 0.2973 0.2441
ethylene-2 10 353 0 0.3020 0.2487
Zhao2 33 861 0 0.9225 0.9225
scircuit 170 998 84 0.9999 0.9995
hcircuit 105 676 48 0.9999 0.9852

Table IV. The size of the border in the 8-block SBBD form computed using
wide separators in GBT+B.

Method

Identi�er n |S| I II III

Matrix35640 35 640 1313 1949 2221 2038
bayer01 57 735 247 437 545 432
icomp 75 724 299 411 427 412
Matrix32406 32 406 1504 2470 3168 2336
lhr34c 35 152 769 1505 1959 1346
bayer04 20 545 390 621 621 612
lhr71c 70 304 918 1458 1772 1378
4cols 11 770 211 369 354 294
10cols 29 496 275 447 446 384
onetone2 36 057 1434 2832 3391 2825
ethylene-1 10 673 248 612 570 484
ethylene-2 10 353 239 565 513 487
scircuit 170 998 444 1255 1856 1237
hcircuit 105 676 458 1051 1361 1052

|S| denotes the size of the vertex separator.

examples. For the remaining problems, we see that Method III remains the method of choice
and, comparing the results with those in Table II, it is clear that preordering A can lead to
a dramatic reduction in the border size. In particular, for lhr71c the border size is reduced
from 18 864 to 1378 columns, and for Matrix35640 the percentage of border columns is cut
from 84% to less than 6%.
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Table V. The row di�erences for the 8-block SBBD form computed using wide
separators in GAT+A (denoted by ‘Before’) and GBT+B (denoted by ‘After’).

I II III

Identi�er Before After Before After Before After

Matrix35640 4.02 0.43 121.82 1.89 16.75 1.55
bayer01 8.81 0.17 27.18 0.26 9.52 0.26
icomp 0.17 0.13 0.17 0.15 0.16 0.21
Matrix32406 12.57 1.88 65.19 6.32 34.20 1.51
lhr34c 7.56 0.86 47.79 5.05 27.67 1.73
bayer04 22.04 0.39 43.42 0.78 22.59 0.66
lhr71c 6.57 0.32 12.31 0.80 5.99 0.30
4cols 0.68 0.61 1.29 1.16 2.04 1.70
10cols 0.52 0.46 0.52 1.06 1.00 0.92
onetone2 1.69 1.18 10.07 3.99 7.23 1.09
ethylene-1 2.62 2.40 4.65 3.60 2.32 1.72
ethylene-2 1.93 2.40 4.71 2.70 1.62 2.32
scircuit 0.03 0.03 0.43 0.14 0.11 0.17
hcircuit 0.14 0.03 2.01 0.26 0.99 0.70

For many of our test examples, preordering using MC21 not only reduces the border size
but also improves the row balance. For a given SBBD form, we de�ne the percentage row
di�erence to be

(mmax − n=N )=(n=N ) ∗ 100
where N is the number of blocks and mmax is the largest number of rows in a block. Thus
the row di�erence compares the size of the largest block with the average block size. A small
row di�erence implies the blocks are of a similar size and this is what is meant by a good
row balance. In Table V, we give the row di�erences for the 8-block SBBD forms computed
using Methods I, II and III applied to GAT+A and GBT+B. The columns labelled ‘Before’ are
computed using wide separators in GAT+A and those labelled ‘After’ use GBT+B. We see that,
for a number of the highly unsymmetric problems, the row imbalance when wide separa-
tors are computed using GAT+A is very poor, particularly if Method II (the Brainman and
Toledo method) is used. But if we reorder using MC21 the row balance improves signi�-
cantly for these examples. In particular, the row di�erence for Method III is always less
than 2:5%.

5. COMPUTING SBBDS WITHOUT COMPUTING WIDE SEPARATORS

The results in Tables IV and V are encouraging since, for many examples, we are now
obtaining good row balance and border sizes that should not lead to the interface problem
causing a signi�cant bottleneck when the ordering is used with a parallel direct solver such
as HSL MP43 or HSL MP48. However, for some problems the wide separator is much larger
than the vertex separator (given in column 3 of Tables II and IV). Since for matrices with
a non-zero diagonal and unsymmetric sparsity pattern a vertex separator in GATA is not nec-
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essarily a wide separator in GAT+A but, by Theorem 3, is a vertex separator in GAT+A, it may
be advantageous to try and compute the SBBD directly from the vertex separator in GAT+A
(or GBT+B), without computing wide separators.
Suppose S is a vertex separator in GAT+A. Let VC1; VC2; : : : ; VCN be the subsets of columns

of A that correspond to the N components of GAT+A once S and its incident edges have been
removed. Each row has to be assigned to a partition. We do this by considering the rows in
turn and, for each row, examine the column indices of its non-zero entries. Let rowi and colj
denote the ith row and jth column of A. We �rst add up the number of entries ni; k in rowi
that belong to the subset VCk (16 k6N ). If ni; l= max{ni; k : 16 k6N}, we assign rowi
to the partition l. We then move all columns colj in rowi that do not belong to VCl into the
set S. Once all the rows have been considered, the only rows that are still unassigned are
those which have all their non-zero entries in S. Such rows are assigned equally to the N
partitions. The �nal set S is the set of border columns. In this way, A is ordered into SBBD
form.
If block(i) denotes the partition in the SBBD form to which rowi is assigned, the above

algorithm can be summarized as follows.

Algorithm. SBBD vertex separator

1. Set S be a vertex separator in GAT+A. Initialize block(1 : n)=0.
2. For each rowi, consider the columns colj of its non-zero entries;
add up the number ni; k of entries belonging to each VCk .
If ni; l= max{ni; k : 16 k6N} then
set block(rowi)= l;
remove all colj ∈VCk for each k �= l from VCk and add to S.

3. Once all rows considered, assign any rows for which block(rowi)=0 equally between
the N partitions.

4. If for some k, colk ∈ S has non-zero entries only in rows belonging to partition m, colk
is removed from S and added to VCm.

To limit the row imbalance, at step 2, rowi is only assigned to partition l if the number of
rows in partition l is less than a given fraction of the total number of rows n. In our tests, we
only allow a row to be assigned to partition l if either ni; k =0 for all k �= l or the total number
of rows assigned to l is less than Imbal ∗ n=N , where we set the imbalance parameter Imbal
to 1.2. If partition l is already too large, then block(rowi) is set to l1, where subset VCl1 has
the next largest number of entries in rowi.
In Table VI results are presented for this vertex separator method (which we refer to

as Method VS) and are compared with the best wide separator method from Section 4
(Method III) and with HSL MC66 (the HSL implementation of the MONET algorithm [6]).
Results are given for 2, 4, and 8 partitions. We use MC21 to preorder the problems for
which A has an unsymmetric structure prior to calling Methods III and VS but not before
calling HSL MC66. We do not preorder for HSL MC66 because this code is designed particu-
larly for highly unsymmetric problems and experiments using BT + B generally led to wider
borders.
Comparing the vertex separator approach (VS) with the wide separator approach (III) we

see that, for the (nearly) symmetric problems there is little to choose between the two but
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Table VI. The size of the border in the SBBD form computed using the wide separator Method III, the
vertex separator Method VS, and HSL MC66.

Number of blocks

N =2 N =4 N =8

Identi�er n III VS MC66 III VS MC66 III VS MC66

Matrix35640 35 640 490 388 344 1008 965 704 2038 1682 1367
bayer01 57 735 90 69 71 234 169 135 432 296 254
icomp 75 724 41 36 55 213 171 134 412 325 229
Matrix32406 32 406 170 134 1215 1112 894 2539 2336 1750 3514
lhr34c 35 152 509 474 94 965 936 354 1346 1202 792
bayer04 20 545 87 91 182 306 254 369 612 463 542
lhr71c 70 304 514 135 198 775 706 392 1378 1290 990
poli large 15 575 303 301 394 568 543 582 695 652 713
4cols 11 770 33 34 30 95 70 106 294 217 233
10cols 29 496 32 33 30 167 142 123 384 290 279
onetone2 36 057 469 233 254 1967 1333 1204 2825 1797 1745
ethylene-1 10 673 38 38 75 202 129 111 484 290 217
ethylene-2 10 353 27 28 50 151 93 133 487 293 217
Zhao2 33 861 666 665 641 1794 1790 1688 3014 2979 2773
scircuit 170 998 58 58 2551 594 600 3753 1237 1230 4353
hcircuit 105 676 191 190 591 364 365 891 1052 1052 2138
bcircuit 68 902 3 3 563 142 141 737 631 618 951
garon2 13 535 542 542 682 1100 1100 1543 2059 2031 2308
pesa 11 738 81 79 127 192 192 245 445 444 446
wang3 26 064 1740 1740 1740 3355 3316 3310 4904 4863 4813

for the unsymmetric examples in the top half of the table, the former generally yields the
narrower borders. For both methods, the row imbalance with N =8 blocks was less than 2:5%
for each of the test problems. Compared with HSL MC66, we see that Method VS produces
wider borders for some of the unsymmetric problems but for others the converse is true. For
the symmetrically structured examples, Methods III and VS outperform HSL MC66.

6. NESTED DISSECTION VERTEX SEPARATORS

As well as providing routines for partitioning graphs into equal parts, METIS has routines
for computing �ll-reducing orderings for sparse matrices. These use a multilevel nested dis-
section algorithm. The nested dissection algorithm is based on computing a vertex separator
of the graph of the matrix. Thus an alternative approach for ordering A to SBBD form
is to use the multilevel nested dissection routine METIS NodeND to compute a vertex sep-
arator in GAT+A (or GBT+B) and to either widen it using the wide separator algorithm of
Section 4 or use it in the SBBD vertex separator algorithm (see Section 5). We refer to
these as Methods III(ND) and VS(ND), respectively. Results for 4 and 8 blocks are given in
Table VII. Again, MC21 is used to preorder the problems for which A has an unsymmetric
structure prior to using Methods III(ND) and VS(ND). We remark that it was necessary
to modify routine METIS NodeND in order to extract the vertex separator information. The
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Table VII. The size of the border in the SBBD form computed using the nested
dissection-based methods III(ND) and VS(ND).

Number of blocks

N =4 N =8

Identi�er n III(ND) VS(ND) III(ND) VS(ND)

Matrix35640 35 640 857 764 1756 1599
bayer01 57 735 328 339 584 458
icomp 75 724 328 268 386 332
Matrix32406 32 406 1103 1112 1840 1756
lhr34c 35 152 442 412 1015 941
bayer04 20 545 216 180 530 404
lhr71c 70 304 398 345 1004 883
poli large 15 575 1159 1116 2567 2200
4cols 11 770 91 73 311 263
10cols 29 496 128 110 322 313
onetone2 36 057 917 740 1980 1596
ethylene-1 10 673 95 86 322 190
ethylene-2 10 353 76 74 293 201
Zhao2 33 861 1858 1720 3392 3132
scircuit 170 998 1067 769 1751 1274
hcircuit 105 676 996 815 2574 2350
bcircuit 68 902 127 75 679 495
garon2 13 535 1226 1219 2078 2050
pesa 11 738 191 181 492 471
wang3 26 064 3118 3137 4370 4376

results show that, in general, the VS(ND) method produces narrower borders than the III(ND)
method.
In Table VIII the border sizes for VS and VS(ND) are compared with those for HSL MC66.

We see that for some problems, including bayer04 and the ethylene examples, using the
nested dissection method leads to the narrowest borders. But for other problems (notably
poli large and hcircuit) nested dissection gives much poorer results. We also �nd that the
row di�erences are signi�cantly larger for the VS(ND) method. For example, for bayer04
with 8 blocks, the row di�erence for Method VS(ND) is 12:4% compared with 0:5% for
Method VS. Similarly, for ethylene-2 the row di�erences are 15:5 and 1:7% for VS(ND)
and VS, respectively. Thus the smaller borders appear to be at the cost of greater row
imbalances.

7. TIMINGS AND HSL MP48 RESULTS

One of the main motivations for this study was the need to preorder matrices to SBBD more
rapidly than using the HSL MC66 implementation of the MONET algorithm. In Table IX, we
compare the run times for Methods VS and VS(ND) with those for HSL MC66. For VS and
VS(ND), the times include the METIS time and the time taken to run MC21 and to permute A
using the MC21 ordering prior to computing the SBBD form. All timings are CPU times in
seconds.
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Table VIII. The size of the border in the SBBD form computed using the VS
and VS(ND) methods, and HSL MC66.

Number of blocks

N = 4 N = 8

Identi�er n VS VS(ND) MC66 VS VS(ND) MC66

Matrix35640 35 640 965 764 704 1682 1599 1367
bayer01 57 735 169 268 135 296 458 254
icomp 75 724 171 264 134 325 332 229
Matrix32406 32 406 894 1112 2539 1750 1756 3514
lhr34c 35 152 936 412 354 1202 941 792
bayer04 20 545 254 180 369 463 404 542
lhr71c 70 304 706 345 392 1290 993 990
poli large 15 575 543 1116 582 652 2200 713
4cols 11 770 70 73 106 217 263 233
10cols 29 496 142 110 123 290 313 279
onetone2 36 057 1333 740 1204 1797 1596 1745
ethylene-1 10 673 129 86 111 290 190 217
ethylene-2 10 353 93 74 133 293 201 217
Zhao2 33 861 1790 1720 1688 2979 3132 2773
scircuit 170 998 600 769 3753 1230 1274 4353
hcircuit 105 676 365 815 891 1052 2350 2138
bcircuit 68 902 141 75 737 618 495 951
garon2 13 535 1100 1219 1543 2031 2050 2308
pesa 11 738 192 181 245 444 471 446
wang3 26 064 3343 3137 3310 4863 4376 4813

On many problems, VS is more than twice as fast as VS(ND) and is signi�cantly faster
than HSL MC66. In fact, for a number of examples, the HSL MC66 timings are prohibitively
expensive when compared with the times given in Table X for solving a single linear system
once it is in SBBD form using the direct solver HSL MP48. These timings, which are for a
subset of our test problems with N =8 run on both processors of our Compaq DS20, are
designed to illustrate the relative costs of reordering and solving the resulting linear system;
further results for HSL MP48 on a variety of computing platforms and di�erent numbers of
processors are presented in Du� and Scott [2]. The reported timings are elapsed times in
seconds, measured using the MPI timer MPI WTIME on the host processor.
The results in Table X demonstrate clearly the importance of having a narrow border. For

those problems with a relatively wide border (including Matrix35640, scircuit and garon2)
the time taken for analysing and factorizing the interface problem represents a signi�cant
proportion of the total solution time. If the number of processors is increased, this will result
in a signi�cant bottleneck and poor speed-ups. However, the results also show that our new
approaches can be successful in obtaining good SBBD forms, that is, SBBD forms leading
to a small interface problem and that are competitive with those found with the MONET
algorithm. For a number of examples (such as the lhr problems), the HSL MP48 time using
the SBBD form computed by the VS method is greater than that reported for the HSL MC66
SBBD form but, if the time required to compute the SBBD form is taken into consideration,
several factorizations of matrices having the same pattern are needed to justify the extra cost
of ordering using HSL MC66.

Copyright ? 2005 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2005; 12:877–894



892 Y. HU AND J. SCOTT

Table IX. The times (in seconds) to compute the SBBD form using the VS and VS(ND)
methods and HSL MC66.

Number of blocks

N =2 N =4 N =8

Identi�er VS VS(ND) MC66 VS VS(ND) MC66 VS VS(ND) MC66

Matrix35640 0.43 1.88 2.02 0.55 1.77 4.31 0.67 1.62 6.93
bayer01 0.57 2.51 2.54 0.76 2.04 4.51 0.93 2.08 6.33
icomp 0.39 1.28 2.06 0.63 1.47 3.93 0.85 1.68 5.71
Matrix32406 1.25 5.15 98.8 1.75 5.61 237 2.20 5.44 324
lhr34c 0.70 3.34 3.38 0.97 3.56 6.49 1.22 3.23 9.64
bayer04 0.19 0.77 1.50 0.28 0.84 2.71 0.36 0.85 3.70
lhr71c 1.63 8.03 7.98 2.21 7.63 13.2 2.76 7.89 19.3
poli large 0.08 0.12 0.08 0.14 0.17 0.14 0.20 0.21 0.21
4cols 0.07 0.95 0.34 0.09 0.87 0.64 0.13 0.66 0.91
10cols 0.18 3.07 0.89 0.26 2.67 1.64 0.34 2.15 2.45
onetone2 0.91 1.23 3.57 0.93 1.28 5.68 1.04 1.37 8.12
ethylene-1 0.07 0.20 1.51 0.11 0.22 1.94 0.15 0.26 2.59
ethylene-2 0.07 0.20 1.50 0.10 0.22 2.62 0.15 0.24 3.07
Zhao2 0.12 0.54 0.70 0.22 0.59 1.53 0.30 0.67 2.44
scircuit 0.95 2.26 26.6 1.44 2.61 44.7 1.83 2.97 54.7
hcircuit 0.49 0.88 6.06 0.75 1.04 11.2 1.01 1.29 16.1
bcircuit 0.24 0.68 2.03 0.40 0.79 3.82 0.55 0.97 5.34
garon2 0.12 0.14 0.80 0.21 0.20 1.54 0.29 0.25 2.35
pesa 0.04 0.09 0.25 0.06 0.11 0.48 0.09 0.13 0.75
wang3 0.10 0.40 0.80 0.18 0.46 1.52 0.25 0.52 2.37

Table X. Timings for ordering to SBBD form and then using HSL MP48 to solve a single
linear system (N =8).

VS MC66

Identi�er Ordering MP48 Ordering MP48

Matrix35640 0.67 16.7 (5.01) 6.93 12.8 (4.80)
bayer01 0.93 1.58 (0.04) 6.33 1.70 (0.03)
icomp 0.85 0.48 (0.002) 5.71 0.41 (0.001)
lhr34c 1.22 10.8 (1.27) 9.64 7.63 (0.67)
lhr71c 2.76 26.3 (1.08) 19.3 22.5 (0.95)
4cols 0.13 0.15 (0.02) 0.91 0.15 (0.02)
10cols 0.34 0.61 (0.03) 2.45 0.55 (0.03)
ethylene-2 0.15 0.38 (0.01) 3.07 0.37 (0.01)
scircuit 1.83 18.4 (2.59) 54.7 43.1 (31.6)
bcircuit 0.55 2.93 (0.47) 5.34 2.89 (0.50)
garon2 0.29 29.4 (11.8) 2.35 25.6 (14.7)

The numbers in parentheses are the times for analysing and factorizing the interface problems.

All the reordering algorithms discussed in this paper are serial algorithms. But, even using
the faster VS ordering algorithms, the time taken to reorder to SBBD form can still be greater
than the time needed to solve the resulting linear system using HSL MP48. Thus in the future
we would like to develop reordering algorithms that can be run in parallel.
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8. CONCLUDING REMARKS

New algorithms that avoid using either the row or column graph of the matrix have been
proposed for ordering an unsymmetric matrix A to SBBD form. The new methods use either
vertex separators or wide separators of the symmetrized matrix AT + A. In general, if A has
a highly unsymmetric sparsity pattern with a large number of zeros on the diagonal, SBBD
forms with better row balance and narrower borders are achieved by �rst applying a maximal
matching ordering to A to improve its symmetry. For many of our test problems, the new
methods are competitive with the existing MONET algorithm of Hu et al. [6]. In particular, for
symmetrically structured examples, the separator methods generally lead to narrower border
sizes. Furthermore, the new methods are much faster than the MONET algorithm. This makes
them useful alternatives when the required number of factorizations of matrices having the
same sparsity pattern is small because the overall cost of reordering A and then solving a
single linear system (or small number of systems) using a parallel direct solver can be faster
for the new algorithms than for MONET.
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