
I h I E R N A TIONAL JOURNAL FOR NUMFRICAL METHODS IN ENGINEERING, VQL. 28, 2555-2568 (1989)

THE USE OF PROFILE REDUCTION ALGORITHMS WITH
A FRONTAL CODE

I. S. DUFF, J. K. RElD AND .I. A. SCOTT

Computer Scimce nnd Spstrms Dirision. Marwell L.aboratory, Oxon OX1 I ORA, U.K.

SUMMARY

We study profile reduction algorithms when used to order the elements for the frontal solution of a system of
linear equations with a symmetric sparsity pattern. We consider two distinct procedures for producing an
efficient element ordering; one based on assembling the pattern of the finite-element matrix, reordering the
variables and using the new variable order to resequence the elements, and the other based on generating
adjacency lists for the elements themselves and reordering the elements directly.

We compare the results of using several variants of these algorithms in conjun.ction with the Narwell
frontal code, MA32, on the CRAY-2 for a range of practical problems. We find that, given suitable
enhancements, both approaches are practical and neither is consistently superior to the other.

1. INTRODUCTION

We consider the solution of sparse linear systems of equations

A x = b

where the n x n matrix A is a sum of elemental matrices
m

and the right-hand side vector b is of the form

In equation (2) each matrix A['] has entries only in the principal submatrix corresponding to the
variables in element 1 and represents contributions from this element. 'rhis principal submatrix is
assumed to be dense (any zeros are stored explicitly). The matrix A may be unsyrnmetrir: but the
form (2) implies that it has a symmetric sparsity pattern. A frontal method of solution is

In a finite-element context, the efficiency of a froclal scheme, in ternis of both storage and
computation time, is dependent upon the ordering of the elements. This is because in the frorital
method the system matrix A=(ujj) is never assembled explicitly. The formation of the sum (2) is
called the assembly a:td involves the elementary operation

(4)

Element I contributes to the (i.j)th entry i n the matrix A if and only if variables i and j belong to it.

a. =a , .+
V 15 V

Received 20 Ocinher 1988
Revised 14 hfurch 1989

2556 1. S. DUFF, J. K. REID A W D J. A. SCOTT

An entry uij is said to be fully summed when all the contributions of the form (4) have been
summed. From an inspection of the basic Gaussian elimination operation

it is clear that the asscmbly and elimination processes may be interleaved, with each variable being
eliminated as soon as its row and column are fully summed, that is after its last occurrence in a
matrix A[']. If this is done, the elimination operations are confined to the submatrix of rows and
columns corresponding to variables that have not yet been eliminated but occur in at least one of
the elements that have been assembled. This allows all intermediate working to be performed in a
full matrix, termed the frontal matrix, whose size increases when a variable appears for the first
time and decreases whenever a variable is eliminated. Thus the question under consideration is: for
a frontal scheme, what is a good order in which to input the elements?

We now introduce some nomenclature and notation. With reference to equation (l), columnj is
said to be active at stage i i f j 2 i and there is a non-zero entry in columnj with a row index, k , such
that k < i . Letting f; denote the number of columns that are active at stage i, the muximum
wauefront of A is given by

F = max { j J
1 S i S n

The root-mearz-squared (r.m.s.) wavefront is defined to be

The projile of the matrix A is the total number of coefficients in the lower triangle when any zero
ahead of the first entry in its row is excluded. That is,

P= C max{i+l- j) (8)
i = 1 a,, # 0

Note that since it is assumed that A has a symmetric pattern of non-zeros, it follows that

P ' C h (9)
1'1

The average number of arithmetic operations in a single elimination step in a frontal algorithm is
proportional to the mean-squared wavefront and the maximum amount of storage required for
the frontal matrix during the Gaussian elimination is dependent upon the maximum wavefront.
Moreover, the total storage required and the amount of work involved in the back substitution
stage depend on the profile of the matrix. Thus the elements should be numbered in such a way as
to reduce F , F' and P.

For finite-element problems involving only a small number of elements, it is generally not
difficult to order the elements efficiently. Similarly for problems on simple finite-element meshes it
is relatively straightforward to order the elements. With more complex grids, this is frequently
much harder. Moreover, when finite-element meshes are generated using some automatic
procedure, the resulting element numbering may lead to unnecessarily large F , and P . In such
cases, an algorithm to reorder the elements i s invaluable. The need for an efficient element
ordering is particularly important in non-linear computations where it is necessary to solve a
sequence of systems of finite-element equations with the same structure a large number of times.

Various algorithms for automatic ordering of finite elements have been proposed. These include
the methods described by Akin and Pardue,' Bykat,' Razzaque," Pina," Sloan and Randolph,14

PROFILE REDUCTION ALGORITHMS 2557

Fenves and Law6 and S10an.'~ The different algorithms described in the literature may be broadly
divided into two classes. Firstly, there are the methods which relabel the variables and then use the
new variable numbers to resequence the elements; the new variable numbers are subsequently
discarded. This class of methods will be referred to as indirect element reordering. The other class
of methods, which appears to be less popular, reorders the elements directly. In this report we
employ the recent algorithm of Sloan13 to reorder the elements indirectly, and we apply a similar
procedure to resequence the elements directly.

In Section 2 we introduce some basic concepts from graph theory then briefly discuss the
Harwell profile reduction code MC40, which implements the algorithm due to S10an.'~ Indirect
element-reordering algorithms are discussed in Section 3, and in Section 4 we consider reordering
the elements directly. The practical finite-element problems which have been used to test the
efficiency of the reordering algorithms and their use in conjunction with the Harwell frontal solver
MA32 are described in Section 5, and the numerical results obtained using the CRAY-2 are
summarized in Section 6. Finally, in Section 7 concluding remarks and comments are made.

2. THE CODE MC40 FOR PROFILE REDUCTION

The code MC40 is a profile and wavefront reduction code for matrices with a symmetric sparsity
pattern. The code was developed by Sloan,' who gives full details of the algorithm. We have made
some minor modifications to Sloan's algorithm.

Ordering schemes for sparse matrices are related to the labelling of an undirected graph. To
describe the code MC40 it is therefore useful to recall some basic definitions from elementary
graph theory.

2.1. Graphs, mutrices and jinite-element meshes

An undirected graph G is defined to be a pair (V , 6), where V is a finite set of nodes (or vertices),
and E is a finite set of edges defined as unordered pairs of distinct nodes. A labelling (or ordering) of
a graph G=(V, E) with n nodes is a bijection of {l , 2, . . . , n> onto V. The integer i (1 < i G n)
assigned to a node in V by a labelling is called the hheI (or number) of that node. Two nodes i and j
in G are said to be adjucent if (i , j) c E . The degree of a node ~ E G is defined to be the number of nodes
in G which are adjacent to i , and the adjucency list for i is the list of these adjacent nodes. A path of
length k in G is an ordered sct of distinct nodes (io, i , , . . . , ik) where (i,- ~ ' ,) E E for 1 < j , < k . Two
nodes are connected if there is a path joining them. A graph G is connected if each pair of distinct
nodes is connected. Otherwise, G is disconnected and consists of two or more components.

The distnnrr between nodes i and j in a connected graph G (or in a component of a disconnected
graph) is denoted by d(i,j), and 1s defined to be the number of edges on the shortest path
connecting them. The diameter D(G) of G is the maximum distance between any pair of nodes. That
is,

D(G) = max {d(i , j) (i, j E V >

Nodes at opposite ends of a diameter of G are known as peripheral nodes. A pseudo-diameter 6(G)
is defined by any pair of nodes i and j in G for which d(i, j) is close to D(G). A pseudo-diameter may
be slightly less than, or equal to, the true diameter and is found by some heuristic algorithm. Nodes
defining a pseudo-diameter are termed pseudo-peripheral nodes.

A leuel structure rooted at a node r is defined as the partitioning of V into levels fl(r),
Iz(r), . . . , I,(r) such that

(i) I,(r) = (r) and

2558 I S DIJFF, J K KFID AND J. A. SCOTT

(ii) for i > 1, &) is the set of all nodes that are adjacent to nodes in 1,- l(r) but are not in /,(F).

The level structure rooted at node r may be expressed as the set L(rj= {/l(r)- 12(r), i,I(r)), where
h i s the total number of levels and 1s termed the depth. The width Cpf level I is 11,(r)I (the number of
nodes on level i) and the width of the level structure is given as

M), ' 3 . > 1,- 1W"

w = max (Il,(r)lj
l S i 4 h

We now establish the relationship between graphs and matrices. Let A = (uJ be an n x n matrix
with a symmetric pattern of entries. Corresponding to A is a labelled graph C; with n nodes and an
edge between nodes i and j if and only ifu,, # 0, i # j . A syminetPic permutation of A leaves its graph
unchanged except €or the labelling of its nodes.

A finife-element mesh Is a collection of finite elements in which elerrienfs are joined at their
common boundaries and vertices. Finite-element nodes may lie at vertices. along the sides, on the
faces or within the element itself. Associated with each finjte-eiement node is a set of variable5
corresponding to the freedoms at that node. The finite-clement mesh can be transformed directly
into the graph of the assembled finite-element matrix. We will call this the variable connectivity
graph to distinguish it from the supervariable connectivity and eleincnt corinectivitg graphs
introduced below. The nodes of the variable connectivity graph are the variables defined on lhe
finite-element mesh, and the edges are constructed by making the variables of each element
pairwise adjacent.

A s p r u a r i u b b IS a collection of one or more variables, such that each variable belongs to the
same set of finite elements. For example, in the problem involving four 8-nudei8-freedom elements
shown in Figure 1, variables I , 2, 6 belong only to element 1 and form a supervariable, and
variables 3 and '7 belong to elements 1 and 2 and form another supervariable. Note that, if a node
has more than one freedom, they will all belong to the same supervariable. The finite-element mesh
can be transformed i ~ b ~ a supervariable connectivity graph, whose nodes are the supervariables
and whose edges are foxnred by making the supervariables of each finite element pairwise adjacent.
Provided the numbers of the t ariables in the supervariables are recorded, the supervariable
connectivity graph actually probides a ccmpaut representation of the variable connectivity graph.

The connectivity of the finite elements may also be represented as a graph; this graph will be
termed the element connectivity graph. Fhe nodes In the element connectivity graph correspond
to the fitlite elements in the mesh and the edges describe the intercs>n,tcction of tbe finite elements.

Figure 1. A 4-element problem

PROFILE REDUCTION ALGORITHMS 2559

2.2. The profile reduction code MC40

The code MC40 may be applied to the variable connectivity graph, the supervariable
connectivity graph or the element connectivity graph associated with a finite-element mesh. It will
suffice to describe the code for a graph G = (V , E) with N nodes. The graph is stored using an
integer array pair (IRN, IP), where the one-dimensional array IRN holds in sequence the
adjacency lists for each of the nodes i~ V, and IP is an index array of length N + 1, containing
pointers to the beginning of each adjacency list in IRN, with IP (N + 1) pointing to one greater
than the location in IRN of the last entry in the adjacency list for node N . The fact that G is stored
using the array pair (IRN, IP) implies a particular labelling of the associated graph, and this will be
referred to a5 the original labelling.

The reordering comprises two distinct steps:

(i) selection of a pair of pseudo-peripheral nodes and
(ii) node relabelling.

In the first step, for each component of the graph G, a pair of pseudo-peripheral nodes is located.
The level structures associated with these nodes are generally deep and narrow, and can be used to
find good starting points for profile and wavefront reduction algorithms. The procedure that we
use to locate pseudo-peripheral nodes is a modification of that described by Gibbs, Poole and
Stockmeyer8 and George and L ~ u . ~ To locate a pair of pseudo-peripheral nodes a starting node
SEG of minimum degree is chosen, and the level structure L(s) is generated. The Gibbs, Poole and
Stockmeyer algorithm then generates the level structures rooted at each of the nodes in the last
level set !,,(s), selected in order of increasing degree. If, for some rElh(s), the depth of L(r) exceeds
that of L(s), r replaces s as the starting node, and the procedure is repeated. If no such node r is
found, and e is the nodc in Ih(s) whose associated level structure has the smallest width, the nodes s
and e are chosen as pseudo-peripheral nodes. George and Liu’ modify this algorithm to include a
’short circuiting’ strategy by which wide level structures are rejected as soon as they are detected;
the same strategy is incorporated within the code MC40. To reduce the number of nodes in the last
level set I,(s) for which it is necessary to generate the rooted level structures, George and Liu7 and
SloanL3 adopt ‘shrinking’ strategies. George and Liu choose only one node in /,,(s), and discuss
several possible choices for this node. Sloan reports that, for his test problems, using only one node
from the last level set could lead to pseudo-peripheral nodes defining a pseudo-diameter which he
did not consider to be sufficiently close to the diameter D(G). Sloan chose instead to shrink I&) by
taking the first (m+2)/2 entries in the sorted list (sorted in ascending sequence of degree),
where rn is the width of level h. We have found that this may still result in the level structures for a
substantial number of nodes having to be constructed. We tried avoiding any node in &) with a
neighbour that had been tested, but found that this was less economical than Sloan’s strategy.
Instead, we have chosen to construct a list comprising those nodes in EL(.??) with distinct degrees,
with ties broken arbitrarily. It was found that, for some problems, this new strategy led to a slight
increase in the computed reduced profiles and wavefronts compared with those obtained using
Sloan’s strategy, but for other problems the effect was a small reduction. For all the problems
considered, the use of the new shrinking strategy led to significant reductions in the CPU time
required to run MC40 and was therefore adopted in MC40.

In the second step of the algorithm, the nodes in each component are renumbered to obtain a
profile which is smaller than that given by the original labelling of the graph. The pseudo-
peripheral nodes s and e found in the first step serve as starting and end nodes for the relabelling
within their component. The level structure rooted at the end node L(e) is generated and the
distance d(e, i) of each node i from the end node is computed. The starting node s is relabelled as

2560 I. S. DUFF’. J. K. REID AND I. A. SCOTT

node one and a list of nodes that are eligible to receive the next label is formed. At each stage in the
relabelling process the list of eligible nodes comprises those nodes which are either adjacent to a
node which has been relabelled or are adjacent to a node which is itself adjacent to a relabelled
node. The next node to be given a new number is the node among all eligible nodes with the
highest priority, where the priority Pi is defined to be

pi=- w * cdeg(i) + W, * d(e, i) (10)
for i~ V(G). Here W , and W , are positive integer weights and the current degree cdeg(i) is the
potential growth in front size (the number of nodes adjacent to i, not including any node that has
been relabelled or is itself adjacent to a relabelled node). The priorities of the eligible nodes are
updated at each step. Following SloanI3 the default values for the weights in MC40 are W , = 2
and W, = 1, so that both the front growth and the global structure of the graph are taken into
account. Once all the nodes have been assigned new labels, the code checks that the corresponding
profile is less than the initial profile. If this is not the case, the original labelling is retained.

3 . INDIRECT ELEMENT REORDERING

In the first of the indirect element-reordering algorithms which we consider, the profile reduction
code MC40 is applied to the variable connectivity graph. The new ordering of the variable
connectivity graph given by MC40 may be used to obtain an efficient frontal solution by
relabelling the elements so that the variable-by-variable elimination order is (approximately)
conserved. It was observed in the paper by Akin and Pardue‘ that this may be achieved by
ordering the elements in ascending sequence of their lowest numbered variable. This procedure is
alsp advocated by Razzaque,” Sloan and RandolphL4 and S10an.I~

The need to obtain and work with the variable connectivity graph can make this indirect
element-reordering algorithm expensive to use. In problems where the finite-element nodes have
more than one freedom and in some problems involving high-order elements, the computational
cost of resequencing the elements may be considerably reduced if a supervariable connectivity
graph is used. If the code MC40 is applied directly to the supervariable connectivity graph then no
account is taken of the number of variables in each supervariable. For finite-element grids
comprising different element types with multiple freedoms associated with the finite-element
nodes, the number of variables in each supervariable may vary significantly. To allow for this
variation we need to redefine the degree of a node in a supervariable connectivity graph. In a
supervariable connectivity graph, each node is a supervariable and for node i we define the degree
to be the total number of variables in the supervariables adjacent to i.

There is a close relationship between the pseudo-diameters of the variable and supervariable
connectivity graphs. Suppose that we are given a level structure L(R) of supervariables rooted at
supervariable R and that we construct the level structure L(r) of variables rooted at a variable r
belonging to R. The variables belonging to the supervariables in level ((R) will also lie in level li(r)
(i = 2 , 3 , . . .). In fact, the only difference between the level sets will be that the variables of R apart
from r will be in level set 2. It follows that the diameters of the two graphs are identical.
Unfortunately, the details of the code do not mean that the same pseudo-diameter is necessarily
chosen, but the lengths of the pseudo-diameters are likely to be the same. However, we may
certainly use the supervariable representation as a mechanism to construct a pseudo-diameter for
the variable connectivity graph.

Similarly, there is a close relationship between the orderings on the variable and supervariable
connectivity graphs. Apart from one detail, we could use the supervariable representation to
construct the ordering for the variables. The detail is that, when a variable is chosen, all the other

PROFILE REDUCTION ALGORITHMS 2561

variables of its supervariable have current degree zero and are likely to be chosen next, but they
need not be. Of course, in the supervariable representation, all the variables in a supervariable are
chosen together. Modifying the variable ordering to give top priority to variables with current
degree zero is anyway very sensible, so we feel justified in regarding the whole of the supervariable
ordering scheme as an efficient means of implementing variable ordering. Several details of the
coding mean that we rarely get identical results, however.

Once the supervariable version of MC40 has been employed to order the supervariables, the
finite elements are ordered in ascending sequence of their lowest numbered supervariable. For
many problems the number of nodes and edges in the supervariable connectivity graph is
considerably less than the corresponding number in the variable connectivity graph and, since the
time taken to run MC40 is dependent upon the number of nodes and edges in the graph, using the
supervariable connectivity graph instead of the variable connectivity graph can result in
significant savings in terms of both execution time and storage. This is illustrated in Section 6.

4. DIRECT ELEMENT REORDERING

An alternative approach to renumbering the variables (or supervariables) and using the new
labelling of the variable (or supervariable) connectivity graph to reorder the elements is to reorder
the elements directly. There are several possible approaches to this problem. Direct element
reordering is discussed briefly by Akin and Pardue.' The algorithms described by Bykat,* Pina"
and Fenves and Law6 are direct element-reordering schemes. In particular, the procedure
proposed by Bykat is a modification of the Cuthill -McKee algorithm (Cuthill and McKeej) for
reducing the bandwidth of a sparse matrix with a symmetric sparsity pattern, applied to the
element connectivity graph instead of the variable connectivity graph. Bykat generates an element
connectivity graph by defining two elements to be adjacent to one another whenever they share a
common edge and describes his algorithm in detail for planar triangular elements.

Fenves and Law6 generalize the definition of adjacent elements used by Bykat to problems in n
dimensions, n= 1, 2, 3. Fenves and Law define two elements in n dimensions to be adjacent
whenever they possess a common boundary of (n - 1) dimensions. Thus in three dimensions two
volumetric elements arc adjacent if they share a common two-dimensional boundary face; in two
dimensions planar elements are interconnected by one-dimensional boundary lines; and one-
dimensional finite elements are adjacent if they have a common finite-element node. Fenves and
Law employ this definition of adjacent elements to generate an element connectivity graph, and
reorder the elements directly by applying the standard Cuthill-McKee algorithm.

It was noted by Fenves and Law that the adjacency of elements cannot always be completely
represented by the above definition of adjacent elements, since n-dimensional elements are not
necessarily connected through (n - 1)-dimensional boundaries. In addition, adjacent finite ele-
ments do not necessarily have the same geometric dimensions. In such examples, the element
connectivity graph may become disconnected, and each component must be numbered indepen-
dently. This contributes to thc difficulties associated with attempting to implement this algorithm.

We have adopted a simpler procedure for reordering the elements directly than that suggested
by Bykat or by Fenves and Law: we define two elements to be adjacent to each other whenever
they have one or more variables in common. Using this definition, i t is not difficult to generate the
associated element connectivity graph; the user does not need to provide information on the
different types of elements in the grid other than a list of the variables associated with each finite
element (which is exactly what the Harwell frontal solver MA32 requires). Once the element
connectivity graph has been generated, the code MC40 may be employed to reorder the elements
directly.

2562 I. S. DUFF, J. K. REID AND J. A. SCOT?

The definition of element adjacency used by Fenves and Law6 was considered for the test
problems with finite-element meshes in which all the elements were of the same geometric
dimension. The computed maximum and r.m.s. wavefronts using this approach were marginally
smaller for some problems compared with those obtained using our simple definition of element
adjacency, but for other problems the reverse was true. For problems involving different types of
elements, using the Fenves and Law definition is complicated since it is necessary to distinguish
between elements of different dimensions and for such problems we employed only our simple
definition of element adjacency.

The main disadvantage of reordering the finite-element mesh directly using the element
connectivity graph in which two elements are adjacent whenever they share a common variable is
that the number of variables in each element is not taken into consideration. It is anticipated that
the algorithm will perform at its best when the number of variables per element is relatively
constant. To allow for finite-element meshes comprising finite elements with different numbers of
freedoms we have considered modifying the code MC40 when it is applied to the element
connectivity graph. In the second stage of MC40, we define the priority of node (element) i to be

where cadj(i) is the number of elements adjacent to i, not including those which have been
relabelled or are themselves adjacent to a relabelled element, and N , is the number of variables in
element i. The values assigned to the weights determine the importance of each of these criteria. It
was found that a suitable choice for the weights is W , = 12, W, = 6 and W , = 1, which essentially
means that W, affects only the breaking of ties in Sloan’s priority functipn. For each of our test
problems the r.m.s. wavefront obtained using the third weight W3 was less than or equal to that
found using the unmodified MC40 code (W , = 0). Results using this ‘weighted‘ direct element-
reordering algorithm, which will be referred to as the direct element-reordering algorithm 1, are
included in Section 6.

The direct element-reordering algorithm I aims to reduce the number of elements which are
active during the frontal method of solution, where an element is active if it has been assembled but
not all its variables have been eliminated. Reducing the number of elements that are active will
indirectly reduce the number of active variables. In an attempt to reduce both the number of active
elements and the number of active variables, we have considered a slightly different direct element-
reordering algorithm that uses the element connectivity graph together with the lists of
supervariables associated with each element. The priority of element i is now defined to be

Pi = - W , * ngain(i) + W, * d(e, i) - W , * nadj(i) (12)

where ngain(i) is the number of variables element i will introduce into the front less the number
that can then be eliminated, and nadj(i) is the number of elements adjacent to element i which have
not yet b’een relabelled. It was observed that the choice W , = 12, W, = 6 and W , = 1 gave good
element orderings and these values were chosen as the default values for the weights. If assembling
element i leads to the elimination of a variable v , then ngain(i) = cdeg(v), where cdeg(u) is defined as
in equation (10). In this case, the priority function (12) is therefore Sloan’s function with a third
weight to resolve ties. If every element leads to an elimination, we have another implementation of
the Sloan variable ordering (with another tie-breaking strategy). In general, however, this will not
be the case and the algorithm is therefore different but closely related. This reordering algorithm
will be referred to as the direct element-reordering algorithm 11.

PROFILE REDUCTION ALGORITHMS 2563

5 . THE TEST PROBLEMS

Ten problems are used to compare the element-reordering algorithms outlined in Sections 3 and 4.
The problems all arise from practical applications. A brief description of each problem is given in
Table I. Problems 1 4 and 8-10 were taken from the Harwell-Boeing sparse matrix c~l lect ion.~ In
each example, we were given a list of the unknowns for each element in the finite-element mesh.
These lists do not include the constrained variables which lie on boundaries with Dirichlet
boundary conditions. IJsing these lists the element orderings produced by the reordering
algorithms will differ slightly from those which would be obtained if complete lists of the variables
associated with each element in the finite-element mesh were available. The number of
supervariables in each problem was not given but was obtained from the given data when the
supervariable connectivity graph was generated.

Table I. The test problems (CEGB =Central Electricity Generating Board; TPD = Theoretical Physics
Division, Harwell; LSMC = Lockheed Space and Missiles Company)

Number of
Number of super- Number of

Problem Origin Description variables variables elements Elements

1

2

3

4

5

6

7

8

9

10

CEGB 3D model of a

CEGB Framework
turbine blade

problem
from structural
engineering

CEGB 3D model of a
cylinder with a
flange

CEGB 2D cross-section
of a reactor core

TPD 2D groundwater
flow problem

T P D 2D groundwater
flow problem

T P D 3D groundwater
flow problem

LSMC 2D model of a
component used
in ocean-mining

of a vehicle
LSMC 2D model of part

LSMC Framework model
or a launch
umbilical tower

2694

3222

2859

2996

2254

2656

19197

69 1

3416

2208

316 108

537 79 1

48 3 128

1418 55 1

2123 571

2467 620
1

79

16426 1848
770

176 72
158
94

702 72
10
48

556

368 Y44

20-node/60-freedom bricks

2-node j 12-freedom bars

20-node/60-freedom bricks

8-node/l6-freedom
quadrilaterals
9-node/9-freedoni
quadrilaterals
3-nodej3-freedom bars
6-node/b-freedom triangles
9-nodel9-freedom
quadrilaterals
27-node/27-freedom bricks
18-nodeil8-freedom
tetrahedrals
2-node/6-freedom bars
2-node/l2-freedom bars
3-node/lR-freedom triangles
2-nodej6-freedom bars
2-node/l2-freedom bars
3-node/l 8-freedom triangles
4-node/24-freedom quadri-
laterals
2-nodeil2-frcedom bars

2564 I. S. DUFF, I K. REID AND J. A. SCOT?

6. NUMERlCAL RESULTS

The results obtained by applying the different element-reordering algorithms to the test problems
outlined in Section 5 are presented in this section. Tables I1 and 111 illustrate the maximum and
r.m.s. wavefronts, respectively, using the Sloan indirect reordering algorithm applied to the
variable connectivity graph and to the supervariable connectivity graph (with the appropriate
modification to MC40), and using the direct element-reordering algorithms I and 11. For
comparison the maximum and r.m.s. wavefronts for the user-supplied element ordering are
included. Note that, if the maximum wavefront is F , the maximum storage required for the frontal
matrix is F 2 in the unsymmetric case and F (F + 1)/2 in the symmetric case.

The reductions which are achieved in the maximum and r.m.s. wavefronts using the reordering
algorithms are obviously dependent upon the original user-supplied element ordcr. It is clear that,

Table TI. Maximum wavefronts for the different reordering algorithms

Algorithm

Indirect reordering Direct reordering

User-supplied Super- Algorithm Algorithm
Problem ordering Variables variables I TI

1
2
3
4
5
6
7
8
9

10

120
354
348
152
202
177
99 5
316
834

1266

120
78

285
124
50
25

1136
99

266
60

120
1 I4
29 1
92
50
23

1070
123
181
60

120
186
309
112
59
29

890
159
278
1 I4

117
78

29 1
130
59
25

66 1
114
217

72

Table 111. Root-mean-squared wavefronts for the different reordering algorithms

Algorithm

lndirect reordering Direct reordering

User-supplied Super- Algorithm Algorithm
Problem ordering Variables variables I I1

1
2
3
4
5
6
7
8
9

10

91.2
245.9
216.2
108-3
137.0
121.0
725.2
151.5
583.0
748.0

89.7
60.0

196.8
77.6
35.0
21.0

814.3
66.8

138.1
45%

91.2
7 3 4

190.7
61.5
35.8
20.9

824.1
77.6

11 8.0
45.8

92%
126.7
187.7
76.7
36.3
21.0

6374
100.9
153.4
86-7

89.6
60.3

190.5
84.5
36.6
20-9

520.4
72-1

134.0
50.2

PROFILE REDUCTION ALGORITHMS 2565

for some of the test problems, in particular problems 1 and 3, the user was able to provide a
reasonable element ordering but for most of the problems this was not the case, and the reordering
algorithms were able to provide significant improvements in the maximum and r.m.s. wavefronts.
For problem 7, the indirect reordering algorithms produced a worse element ordering than that
supplied by the user. It should be noted that the reordering algorithms do not guarantee a
reduction in the maximum and r.m.s. wavefronts in the frontal solver.

The CPU times required by the element-reordering algorithms for each of the test problems are
shown in Table TV. ‘These statistics are for the CRAY-2. For each of the algorithms, the CPU times
are given for generating the appropriate connectivity graph and running the profile reduction code
MC40. In addition, the total CPU time required to reorder the elements (including the time taken
to generate the connectivity graph and run MC40), the CPU time taken by the Harwell frontal
solver MA32 using the new element order, and the total CPU time to reorder the elements and run
the frontal solver MA32 once are given. For comparison, the CPU times for MA32 using the user-
supplied element orderings are included. As can be seen from Tablc IV, the most expensive
procedure considered for reordering the elements is, as predicted, the Sloan indirect reordering
algorithm using the variable connectivity graph. Considerable savings are, however, achieved in
the computation times for the indirect reordering algorithm using supervariables in place of
variables.

7. CONCLUSIONS

In this report we have illustrated the use of two distinct classes of methods for resequencing finite
elements prior to running the Harwell frontal solver MA32. The first class of methods comprises
indirect element-reordering schemes based on Sloan’s reordering algorithm. The second class of
methods applies a modification of Sloan’s algorithm to the element connectivity graph and
directly resequences the elements. The indirect element-reordering algorithms aim to reduce
directly the number of columns which are active during any stage of the frontal method by
reordering the elements in such a way as to mimic the desired order of elimination of the variables.
In contrast, by running Sloan’s profile reduction code on the element connectivity graph, the
direct reordering algorithm I aims to reduce the number of elcments which are active during the
frontal method of solution thereby indirectly reducing the number of active variables. The direct
element-reordering algorithm I1 attempts to directly reduce both the number of active elements
and the number of active variables, without first resequencing the variables.

As expected, there is little to choose between the qualities 0s the ordcrings produced by the
variable and supervariable connectivity graphs (Tables TI and HI), while the time for supervariable
reordering algorithm is consistently less (Table IV). Of these two, we therefore prefer the
supervariable reordering algorithm.

For problems involving solid finite elements, the maximum and r.m.s. wavefronts achieved by
the dircct element reordering algorithm I1 were generally, but not consistently, smaller than those
obtained by the direct algorithm I. However, algorithm I pcrformed poorly on framework
problems (problems 2 and 10). Therefore, although it is faster to resequence the elements using the
somewhat simpler algorithm I in place of TI, we conclude that the direct element-reordering
algorithm I1 should be employed in preference to I.

For most of the problems considered, the maximum and r.m.s. wavefronts achieved by the
indirect reordering algorithm using the supervariables and the dircct element-reordering al-
gorithm I 1 were similar and, for a given test problem, it was not possible to predict which of the
two methods would yield the smallest values. For the test problems with fewer supervariables than
finite elements, the indirect method was the faster method, while for problems in which the number

T
ab

le
 I

V
.

C
PU

 ti
m

es
 (s

ec
on

ds
) o

n
th

e
C

R
A

Y
-2

 fo
r

re
or

de
rin

g
th

e
el

em
en

ts
 a

nd
 r

un
ni

ng
 t

he
 H

ar
w

el
l f

ro
nt

al
 s

ol
ve

r M
A

32

C
PU

 ti
m

e
(s

ec
on

ds
)

Pr
ob

le
m

A

lg
or

ith
m

G
en

er
at

e
co

nn
ec

tiv
ity

R

eo
rd

er

gr
ap

h
M

C
40

el

em
en

ts

M
A

32

T
ot

al

1
U

se
r-

su
pp

lie
d

el
em

en
t o

rd
er

In

di
re

ct
 r

eo
rd

er
in

g
us

in
g

va
ria

bl
es

In

di
re

ct
 r

eo
rd

er
in

g
us

in
g

su
pe

rv
ar

ia
bl

es

D
ire

ct
 r

eo
rd

er
in

g
al

go
rit

hm
 I

D

ire
ct

 r
eo

rd
er

in
g

al
go

ri
th

m
 I

I

In
di

re
ct

 r
eo

rd
er

in
g

us
in

g
va

ria
bl

es

In
di

re
ct

 r
eo

rd
er

in
g

us
in

g
su

pe
rv

ar
ia

bl
es

D

ire
ct

 r
eo

rd
er

in
g

al
go

ri
th

m
 I

D

ire
ct

 r
eo

rd
er

in
g

al
go

ri
th

m
 I
1

In
di

re
ct

 r
eo

rd
er

in
g

us
in

g
va

ria
bl

es

In
di

re
ct

 r
co

rd
er

in
g

us
in

g
su

pe
rv

ar
ia

bl
es

D

ire
ct

 r
eo

rd
er

in
g

al
go

ri
th

m
 I

D

ire
ct

 r
eo

rd
er

in
g

al
go

ri
th

m
 I
1

In
di

re
ct

 r
eo

rd
er

in
g

us
in

g
va

ria
bl

es

In
di

re
ct

 r
eo

rd
er

in
g

us
in

g
su

pe
rv

ar
ia

bl
es

D

ire
ct

 r
eo

rd
er

in
g

al
go

ri
th

m
 I

D

ire
ct

 r
eo

rd
er

in
g

al
go

ri
th

m
 I

1

In
di

re
ct

 r
eo

rd
er

in
g

us
in

g
va

ria
bl

es

In
di

re
ct

 r
eo

rd
er

in
g

us
in

g
su

pe
rv

ar
ia

bl
es

D

ire
ct

 r
eo

rd
er

in
g

al
go

rit
hm

 I

D
ire

ct
 r

eo
rd

er
in

g
al

go
rit

hm
 I

1

2
U

se
r-

su
pp

lie
d

el
em

en
t o

rd
er

3
U

se
r-

su
pp

lie
d

el
em

en
t o

rd
er

4
U

se
r-

su
pp

lie
d

el
em

en
t o

rd
er

5
U

se
r-

su
pp

lie
d

el
em

en
t o

rd
er

-

0.
82

0.

04

0.
03

0.

03

-

0.
28

0.

06

0.
04

00

4
-

0.
98

0.

07

00
3

0.
03

0.
27

0

1
 1

0.
04

0.

04

-

0.
37

0.

1 1

0.
03

0.

03

-

3.
00

0.

05

00
1

0.
02

1.
28

0.

04

0.
10

0.

10

-

4.
13

0.

14

0-
02

0-

04

1.
58

0.

32

0.
09

01

3
~ 0.
65

0.

53

0.
07

0.

1 1

-

3.
83

0.

10

0.
04

0.

05

-

1.
59

0.

12

0.
14

0.

15

-

5.
13

0.

22

0.
05

0.

07

-

1.
87

0.

44

0.
13

01

8
~ 1.

18

0.
66

0.

10

0.
14

09
6

0.
93

0.

96

1 .o
o

09
3

2.
50

0.

7 1

0.
76

1.

16

0.
7 1

1.
80

1.

78

1.
73

1.

70

1.
73

0.
96

0.

79

0.
64

0.

78

0.
80

1.
11

0.

64

06
4

06
7

0.
67

09
6

4.
76

1.

06

1 -
04

0.
98

2.

50

2.
30

0.

90

1.
30

0.

86

1.
80

6.

9 1

1.
95

1.

75

1.
80

0.
96

2.

66

1.
08

0

9
 1

0.
98

1.
11

1.

82

1.
30

0.

77

0.
8 1

- in

d
 5 n P
 !

6
U

se
r-

su
pp

lie
d

el
em

en
t

or
de

r
In

di
re

ct
 r

eo
rd

er
in

g
us

in
g

va
ri

ab
le

s
In

di
re

ct
 r

eo
rd

er
in

g
us

in
g

su
pe

rv
ar

ia
bl

es

hr
ec

t
re

or
de

ri
ng

 a
lg

or
ith

m
 1

D

ir
ec

t
re

or
de

ri
ng

 a
lg

or
ith

m
 I

1

In
di

re
ct

 r
eo

rd
er

in
g

us
in

g
va

ri
ab

le
s

In
di

re
ct

 r
eo

rd
er

in
g

us
in

g
su

pe
rv

ar
ia

bl
es

D

ir
ec

t r
eo

rd
er

in
g

al
go

ri
th

m
 I

D

ir
ec

t
re

or
de

ri
ng

 a
lg

or
ith

m
 I
1

In
di

re
ct

 r
eo

rd
er

in
g

us
in

g
va

ri
ab

le
s

In
di

re
ct

 re
or

de
ri

ng
 u

si
ng

 s
up

er
va

ri
ab

le
s

D
ir

ec
t

re
or

de
ri

ng
 a

lg
or

ith
m

 I

D
ir

ec
t

re
or

de
ri

ng
 a

lg
or

ith
m

 I
1

In
di

re
ct

 r
eo

rd
er

in
g

us
in

g
va

ri
ab

le
s

In
di

re
ct

 r
eo

rd
er

in
g

us
in

g
su

pe
rv

ar
ia

bl
es

D

ir
ec

t r
eo

rd
er

in
g

al
go

ri
th

m
 I

D

ir
ec

t r
eo

rd
er

in
g

al
go

ri
th

m
 I

1

In
di

re
ct

 r
eo

rd
er

in
g

us
in

g
va

ri
ab

le
s

In
di

re
ct

 r
eo

rd
er

in
g

us
in

g
su

pe
rv

ar
ia

bl
es

D

ir
ec

t
re

or
de

ri
ng

 a
lg

or
ith

m
 I

D

ir
ec

t
re

or
de

ri
ng

 a
lg

or
ith

m
 I
1

7
U

se
r-

su
pp

lie
d

el
em

en
t

or
de

r

8
U

se
r-

su
pp

lie
d

el
em

en
t

or
de

r

9
U

se
r-

su
pp

lie
d

el
em

en
t

or
de

r

10

U
se

r-
su

pp
lie

d
el

em
en

t
or

de
r

~ 0.
46

0.

13

0.
03

0.

03

-

5.
06

2.

82

0.
41

0.

4 1

-

0.
13

0.

03

0.
02

0.

02

0.
64

0.

09

0.
06

0.

06

-

-

0.
33

0.

07

0.
05

0.

05

-

0.
60

0.

51

0.
08

01

2
-

58
.7

40

.2

1.
75

3.0

 1
-

0.
32

0.

02

0.
08

0.

1 1

2.
63

0.

10

0.
12

0.

1 3

0.
90

0.

03

0.
15

01

7

-

~

-

1.
25

0.

66

0.
15

0.

16

-

62
%

45

.1

2.
55

3.

51

-

0.
46

0.

06

0.
10

0.

1 3

-

3.
31

0.

2 1

0.
18

0.

19

-

1.
27

0.

12

0.
20

0.

23

1.
73

0.

77

0.
77

0.

76

0.
76

90
0

11
5.

0
1 t

 2
.0

48

.7

44
.1

03
5

0.
19

0.

24

0-
19

0.

22

10
.4

5
1.

41

1.
14

2.

10

1.
45

11
.1

5
0.

57

0.
53

0.

73

0.
59

1.
73

2.

02

1.
43

0.

9 1

0.
92

90
.0

17

9.
8

15
2.

1
51

.3

47
.6

0.
35

0.

66

0.
30

02

9
0.

35

10
.4

5
4.

72

1.
35

2.

29

1.
64

11
.1

5
1.

84

0.
65

0.

93

0.
82

9

c

2568 I. S DUFF. J. K. RElD AND J. A. SCOTT

of supervariables exceeded the number of elements the direct method proved the faster method.
We conclude from our empirical evidence that the user may wish to reorder the finite elements
using either the indirect algorithm applied to the supervariables or the direct algorithm 11. A code
which implements both the indirect algorithm applied to the supervariables and the direct
algorithm I1 is to be included in the Harwell Subroutine Library as routine MC43.

ACKNOWLEDGEMENTS

The authors would like to thank S. W. Sloan for helpful discussions. The authors are also grateful
to C. P. Jackson and T. E. Preece for providing the data for the test problems 5, 6 and 7.

REFERENCES

I . J. E. Akin and R. M. Pardue, ‘Element resequencing for frontal solutions’, in J. R. Whiteman (ed.), Malhemutics of

2. A. Bykat, ‘A note on an element ordcrjng scheme’, In t . j . numer. methods eng., 11, 194 198 (1977).
3. E. Cuthill and J. McKee, ‘Reducing the bandwidth of sparse symmetric matrices’, Proc. 24th National Conference ($the

4. I. S. Duff, ‘Enhancements to the MA32 package for solving sparse unsymmetric matrices’, HarweII Report AERE

5. I. S. Duff, R. G. Grimes and J. G. Lewis. ‘Sparse matrix test problems’, ACM Trans. Math. Softw., 15, 1-14 (1989).
6. S. J. Fenves and K. H. Law, ‘A two-step approach to finite element ordering’, 1 ~ t . j . numer. methods eng., 19,891-911

7 . A. George and W. H. Liu, ‘An implementation of a pseudoperipheral node finder’, ACM Trans. Math. Softw., 5,

8.. N. E. Gibbs, W. G. Poole, Jr. and P. K. Stockmeyer, ‘An algorithm for reducing the bandwidth and profile of a sparse

9. P. Hood, ‘Frontal solution program for unsymmetric matrices’, int . j . numer. methods eny., 10, 379 400 (1976).
10. H. M. Irons, ‘A frontal solution program for finite-element analysis’, Int. j . numer. methods eng., 2. 5-32 (1970).
11. H. L. Pina, ‘An algorithm for frontwidth reduction’, Int. j . numer. methods eng., 17, 1539-1546 (1981).
12. A. Razzaque, ‘Automatic reduction of frontwidth for finite element analysis’, lnt. j . numer. methods eng., 15, 1315-1324

13. S. W. Sloan, ‘An algorithm for profile and wavefront reduction of sparse matrices’, Int. j. numer. methods eng., 23,

14. S. W. Sloan and M. F. Randolph, ‘Automatic element reordering for finite-element analysis with frontal schemes’, In t . j .

Finite Elements and Applications, Academic Press, New York, 1975.

Associarion for Computing Machinery, Brandon Press, New Jersey, 1969, pp. 157- 172.

R11009, HMSO, London, 1983.

(1983).

284-295 (1979).

matrix’, S I A M J . Numer. Anal., 13, 236-250 (1976).

(1980).

239-251 (1986).

nunier. methods. eng., 19, 1153-1 181 (19833.

