
I h I E R N A  TIONAL JOURNAL FOR NUMFRICAL METHODS IN ENGINEERING, VQL. 28, 2555-2568 (1989) 

THE USE OF PROFILE REDUCTION ALGORITHMS WITH 
A FRONTAL CODE 

I. S. DUFF, J. K. RElD AND .I. A. SCOTT 

Computer Scimce nnd Spstrms Dirision. Marwell L.aboratory, Oxon OX1 I ORA, U.K.  

SUMMARY 

We study profile reduction algorithms when used to order the elements for the frontal solution of a system of 
linear equations with a symmetric sparsity pattern. We consider two distinct procedures for producing an 
efficient element ordering; one based on assembling the pattern of the finite-element matrix, reordering the 
variables and using the new variable order to resequence the elements, and the other based on generating 
adjacency lists for the elements themselves and reordering the elements directly. 

We compare the results of using several variants of these algorithms in conjun.ction with the Narwell 
frontal code, MA32, on the CRAY-2 for a range of practical problems. We find that, given suitable 
enhancements, both approaches are practical and neither is consistently superior to the other. 

1. INTRODUCTION 

We consider the solution of sparse linear systems of equations 

A x = b  

where the n x n matrix A is a sum of elemental matrices 
m 

and the right-hand side vector b is of the form 

In equation (2) each matrix A['] has entries only in the principal submatrix corresponding to the 
variables in element 1 and represents contributions from this element. 'rhis principal submatrix is 
assumed to be dense (any zeros are stored explicitly). The matrix A may be unsyrnmetrir: but the 
form (2) implies that it has a symmetric sparsity pattern. A frontal method of solution is 

In a finite-element context, the efficiency of a froclal scheme, in ternis of both storage and 
computation time, is dependent upon the ordering of the elements. This is because in the frorital 
method the system matrix A=(ujj) is never assembled explicitly. The formation of the sum (2) is 
called the assembly a:td involves the elementary operation 

(4) 

Element I contributes to the (i.j)th entry i n  the matrix A if and only if variables i and j belong to it. 

a. =a , .+  
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An entry uij  is said to be fully summed when all the contributions of the form (4) have been 
summed. From an inspection of the basic Gaussian elimination operation 

it is clear that the asscmbly and elimination processes may be interleaved, with each variable being 
eliminated as soon as its row and column are fully summed, that is after its last occurrence in a 
matrix A[']. If this is done, the elimination operations are confined to the submatrix of rows and 
columns corresponding to variables that have not yet been eliminated but occur in at  least one of 
the elements that have been assembled. This allows all intermediate working to be performed in a 
full matrix, termed the frontal matrix, whose size increases when a variable appears for the first 
time and decreases whenever a variable is eliminated. Thus the question under consideration is: for 
a frontal scheme, what is a good order in which to input the elements? 

We now introduce some nomenclature and notation. With reference to equation (l), columnj is 
said to be active at stage i i f j 2  i and there is a non-zero entry in columnj with a row index, k ,  such 
that k < i .  Letting f; denote the number of columns that are active at stage i, the muximum 
wauefront of A is given by 

F =  max { j J  
1 S i S n  

The root-mearz-squared (r.m.s.) wavefront is defined to be 

The projile of the matrix A is the total number of coefficients in the lower triangle when any zero 
ahead of the first entry in its row is excluded. That is, 

P= C max{i+l- j )  (8)  
i =  1 a,, # 0 

Note that since it is assumed that A has a symmetric pattern of non-zeros, it follows that 

P ' C h  (9) 
1'1 

The average number of arithmetic operations in a single elimination step in a frontal algorithm is 
proportional to the mean-squared wavefront and the maximum amount of storage required for 
the frontal matrix during the Gaussian elimination is dependent upon the maximum wavefront. 
Moreover, the total storage required and the amount of work involved in the back substitution 
stage depend on the profile of the matrix. Thus the elements should be numbered in such a way as 
to reduce F ,  F' and P. 

For finite-element problems involving only a small number of elements, it is generally not 
difficult to order the elements efficiently. Similarly for problems on simple finite-element meshes it  
is relatively straightforward to order the elements. With more complex grids, this is frequently 
much harder. Moreover, when finite-element meshes are generated using some automatic 
procedure, the resulting element numbering may lead to unnecessarily large F ,  and P .  In such 
cases, an algorithm to reorder the elements i s  invaluable. The need for an efficient element 
ordering is particularly important in non-linear computations where it is necessary to solve a 
sequence of systems of finite-element equations with the same structure a large number of times. 

Various algorithms for automatic ordering of finite elements have been proposed. These include 
the methods described by Akin and Pardue,' Bykat,' Razzaque," Pina," Sloan and Randolph,14 
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Fenves and Law6 and S10an.'~ The different algorithms described in the literature may be broadly 
divided into two classes. Firstly, there are the methods which relabel the variables and then use the 
new variable numbers to resequence the elements; the new variable numbers are subsequently 
discarded. This class of methods will be referred to as indirect element reordering. The other class 
of methods, which appears to be less popular, reorders the elements directly. In this report we 
employ the recent algorithm of Sloan13 to reorder the elements indirectly, and we apply a similar 
procedure to resequence the elements directly. 

In Section 2 we introduce some basic concepts from graph theory then briefly discuss the 
Harwell profile reduction code MC40, which implements the algorithm due to S10an.'~ Indirect 
element-reordering algorithms are discussed in Section 3, and in Section 4 we consider reordering 
the elements directly. The practical finite-element problems which have been used to test the 
efficiency of the reordering algorithms and their use in conjunction with the Harwell frontal solver 
MA32 are described in Section 5,  and the numerical results obtained using the CRAY-2 are 
summarized in Section 6.  Finally, in Section 7 concluding remarks and comments are made. 

2. THE CODE MC40 FOR PROFILE REDUCTION 

The code MC40 is a profile and wavefront reduction code for matrices with a symmetric sparsity 
pattern. The code was developed by Sloan,' who gives full details of the algorithm. We have made 
some minor modifications to Sloan's algorithm. 

Ordering schemes for sparse matrices are related to the labelling of an undirected graph. To 
describe the code MC40 it is therefore useful to recall some basic definitions from elementary 
graph theory. 

2.1. Graphs, mutrices and jinite-element meshes 

An undirected graph G is defined to be a pair (V ,  6), where V is a finite set of nodes (or vertices), 
and E is a finite set of edges defined as unordered pairs of distinct nodes. A labelling (or ordering) of 
a graph G=(V,  E )  with n nodes is a bijection of {l ,  2, . . . , n> onto V. The integer i (1 < i  G n )  
assigned to a node in V by a labelling is called the hheI (or number) of that node. Two nodes i and j 
in G are said to be adjucent if ( i ,  j ) c E .  The degree of a node ~ E G  is defined to be the number of nodes 
in G which are adjacent to i ,  and the adjucency list for i is the list of these adjacent nodes. A path of 
length k in G is an ordered sct of distinct nodes (io, i , ,  . . . , ik )  where (i,- ~ ' , ) E E  for 1 < j , < k .  Two 
nodes are connected if there is a path joining them. A graph G is connected if each pair of distinct 
nodes is connected. Otherwise, G is disconnected and consists of two or more components. 

The distnnrr between nodes i and j in a connected graph G (or in a component of a disconnected 
graph) is denoted by d(i,j), and 1s defined to be the number of edges on the shortest path 
connecting them. The diameter D(G) of G is the maximum distance between any pair of nodes. That 
is, 

D(G) = max {d( i ,  j ) (  i, j E  V >  

Nodes at opposite ends of a diameter of G are known as peripheral nodes. A pseudo-diameter 6(G) 
is defined by any pair of nodes i and j in G for which d(i, j )  is close to D(G). A pseudo-diameter may 
be slightly less than, or equal to, the true diameter and is found by some heuristic algorithm. Nodes 
defining a pseudo-diameter are termed pseudo-peripheral nodes. 

A leuel structure rooted at a node r is defined as the partitioning of V into levels fl(r), 
Iz(r), . . . , I,(r) such that 

(i) I,(r) = ( r )  and 
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(ii) for i >  1, &) is the set of all nodes that are adjacent to nodes in 1,- l(r) but are not in /,(F). 

The level structure rooted at node r may be expressed as the set L(rj= {/l(r)- 12(r), . . . . i,I(r)), where 
h i s  the total number of levels and 1s termed the depth. The width Cpf level I is 11,(r)I (the number of 
nodes on level i )  and the width of the level structure is given as 

M), ' 3 . > 1,- 1W" 

w =  max (Il,(r)lj 
l S i 4 h  

We now establish the relationship between graphs and matrices. Let A = (uJ be an n x n matrix 
with a symmetric pattern of entries. Corresponding to A is a labelled graph C; with n nodes and an 
edge between nodes i and j  if and only ifu,, # 0, i # j .  A syminetPic permutation of A leaves its graph 
unchanged except €or the labelling of its nodes. 

A finife-element mesh Is a collection of finite elements in which elerrienfs are joined at their 
common boundaries and vertices. Finite-element nodes may lie at vertices. along the sides, on the 
faces or within the element itself. Associated with each finjte-eiement node is a set of variable5 
corresponding to the freedoms at that node. The finite-clement mesh can be transformed directly 
into the graph of the assembled finite-element matrix. We will call this the variable connectivity 
graph to distinguish it from the supervariable connectivity and eleincnt corinectivitg graphs 
introduced below. The nodes of the variable connectivity graph are the variables defined on lhe 
finite-element mesh, and the edges are constructed by making the variables of each element 
pairwise adjacent. 

A s p r u a r i u b b  IS a collection of one or more variables, such that each variable belongs to the 
same set of finite elements. For example, in the problem involving four 8-nudei8-freedom elements 
shown in Figure 1, variables I ,  2, 6 belong only to element 1 and form a supervariable, and 
variables 3 and '7 belong to elements 1 and 2 and form another supervariable. Note that, if a node 
has more than one freedom, they will all belong to the same supervariable. The finite-element mesh 
can be transformed i ~ b ~  a supervariable connectivity graph, whose nodes are the supervariables 
and whose edges are foxnred by making the supervariables of each finite element pairwise adjacent. 
Provided the numbers of the t ariables in the supervariables are recorded, the supervariable 
connectivity graph actually probides a ccmpaut representation of the variable connectivity graph. 

The connectivity of the finite elements may also be represented as a graph; this graph will be 
termed the element connectivity graph. Fhe nodes In the element connectivity graph correspond 
to the fitlite elements in the mesh and the edges describe the intercs>n,tcction of tbe finite elements. 

Figure 1.  A 4-element problem 



PROFILE REDUCTION ALGORITHMS 2559 

2.2. The profile reduction code MC40 

The code MC40 may be applied to the variable connectivity graph, the supervariable 
connectivity graph or the element connectivity graph associated with a finite-element mesh. It will 
suffice to describe the code for a graph G = (V ,  E )  with N nodes. The graph is stored using an 
integer array pair (IRN, IP), where the one-dimensional array IRN holds in sequence the 
adjacency lists for each of the nodes i~ V, and IP is an index array of length N + 1, containing 
pointers to the beginning of each adjacency list in IRN, with IP ( N  + 1 )  pointing to one greater 
than the location in IRN of the last entry in the adjacency list for node N .  The fact that G is stored 
using the array pair (IRN, IP) implies a particular labelling of the associated graph, and this will be 
referred to a5 the original labelling. 

The reordering comprises two distinct steps: 

(i) selection of a pair of pseudo-peripheral nodes and 
(ii) node relabelling. 

In the first step, for each component of the graph G,  a pair of pseudo-peripheral nodes is located. 
The level structures associated with these nodes are generally deep and narrow, and can be used to 
find good starting points for profile and wavefront reduction algorithms. The procedure that we 
use to locate pseudo-peripheral nodes is a modification of that described by Gibbs, Poole and 
Stockmeyer8 and George and L ~ u . ~  To locate a pair of pseudo-peripheral nodes a starting node 
SEG of minimum degree is chosen, and the level structure L(s) is generated. The Gibbs, Poole and 
Stockmeyer algorithm then generates the level structures rooted at  each of the nodes in the last 
level set !,,(s), selected in order of increasing degree. If, for some rElh(s), the depth of L(r) exceeds 
that of L(s), r replaces s as the starting node, and the procedure is repeated. If no such node r is 
found, and e is the nodc in Ih(s)  whose associated level structure has the smallest width, the nodes s 
and e are chosen as pseudo-peripheral nodes. George and Liu’ modify this algorithm to include a 
’short circuiting’ strategy by which wide level structures are rejected as soon as they are detected; 
the same strategy is incorporated within the code MC40. To reduce the number of nodes in the last 
level set I,(s) for which it is necessary to generate the rooted level structures, George and Liu7 and 
SloanL3 adopt ‘shrinking’ strategies. George and Liu choose only one node in /,,(s), and discuss 
several possible choices for this node. Sloan reports that, for his test problems, using only one node 
from the last level set could lead to pseudo-peripheral nodes defining a pseudo-diameter which he 
did not consider to be sufficiently close to the diameter D(G). Sloan chose instead to shrink I&) by 
taking the first (m+2)/2 entries in the sorted list (sorted in ascending sequence of degree), 
where rn is the width of level h. We have found that this may still result in the level structures for a 
substantial number of nodes having to be constructed. We tried avoiding any node in &) with a 
neighbour that had been tested, but found that this was less economical than Sloan’s strategy. 
Instead, we have chosen to construct a list comprising those nodes in EL(.??) with distinct degrees, 
with ties broken arbitrarily. It was found that, for some problems, this new strategy led to a slight 
increase in the computed reduced profiles and wavefronts compared with those obtained using 
Sloan’s strategy, but for other problems the effect was a small reduction. For all the problems 
considered, the use of the new shrinking strategy led to significant reductions in the CPU time 
required to run MC40 and was therefore adopted in MC40. 

In the second step of the algorithm, the nodes in each component are renumbered to obtain a 
profile which is smaller than that given by the original labelling of the graph. The pseudo- 
peripheral nodes s and e found in the first step serve as starting and end nodes for the relabelling 
within their component. The level structure rooted at the end node L(e) is generated and the 
distance d(e, i) of each node i from the end node is computed. The starting node s is relabelled as 
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node one and a list of nodes that are eligible to receive the next label is formed. At each stage in the 
relabelling process the list of eligible nodes comprises those nodes which are either adjacent to a 
node which has been relabelled or are adjacent to a node which is itself adjacent to a relabelled 
node. The next node to be given a new number is the node among all eligible nodes with the 
highest priority, where the priority Pi is defined to be 

pi=- w * cdeg(i) + W,  * d(e, i) (10) 
for i~ V(G). Here W ,  and W ,  are positive integer weights and the current degree cdeg(i) is the 
potential growth in front size (the number of nodes adjacent to i, not including any node that has 
been relabelled or is itself adjacent to a relabelled node). The priorities of the eligible nodes are 
updated at each step. Following SloanI3 the default values for the weights in MC40 are W ,  = 2 
and W,  = 1, so that both the front growth and the global structure of the graph are taken into 
account. Once all the nodes have been assigned new labels, the code checks that the corresponding 
profile is less than the initial profile. If this is not the case, the original labelling is retained. 

3 .  INDIRECT ELEMENT REORDERING 

In the first of the indirect element-reordering algorithms which we consider, the profile reduction 
code MC40 is applied to the variable connectivity graph. The new ordering of the variable 
connectivity graph given by MC40 may be used to obtain an efficient frontal solution by 
relabelling the elements so that the variable-by-variable elimination order is (approximately) 
conserved. It was observed in the paper by Akin and Pardue‘ that this may be achieved by 
ordering the elements in ascending sequence of their lowest numbered variable. This procedure is 
alsp advocated by Razzaque,” Sloan and RandolphL4 and S10an.I~ 

The need to obtain and work with the variable connectivity graph can make this indirect 
element-reordering algorithm expensive to use. In problems where the finite-element nodes have 
more than one freedom and in some problems involving high-order elements, the computational 
cost of resequencing the elements may be considerably reduced if a supervariable connectivity 
graph is used. If the code MC40 is applied directly to the supervariable connectivity graph then no 
account is taken of the number of variables in each supervariable. For finite-element grids 
comprising different element types with multiple freedoms associated with the finite-element 
nodes, the number of variables in each supervariable may vary significantly. To allow for this 
variation we need to redefine the degree of a node in a supervariable connectivity graph. In a 
supervariable connectivity graph, each node is a supervariable and for node i we define the degree 
to be the total number of variables in the supervariables adjacent to i. 

There is a close relationship between the pseudo-diameters of the variable and supervariable 
connectivity graphs. Suppose that we are given a level structure L(R)  of supervariables rooted at 
supervariable R and that we construct the level structure L(r) of variables rooted at  a variable r 
belonging to R. The variables belonging to the supervariables in level ( (R)  will also lie in level li(r) 
(i = 2 , 3 ,  . . .). In fact, the only difference between the level sets will be that the variables of R apart 
from r will be in level set 2. It follows that the diameters of the two graphs are identical. 
Unfortunately, the details of the code do not mean that the same pseudo-diameter is necessarily 
chosen, but the lengths of the pseudo-diameters are likely to be the same. However, we may 
certainly use the supervariable representation as a mechanism to construct a pseudo-diameter for 
the variable connectivity graph. 

Similarly, there is a close relationship between the orderings on the variable and supervariable 
connectivity graphs. Apart from one detail, we could use the supervariable representation to 
construct the ordering for the variables. The detail is that, when a variable is chosen, all the other 
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variables of its supervariable have current degree zero and are likely to be chosen next, but they 
need not be. Of course, in the supervariable representation, all the variables in a supervariable are 
chosen together. Modifying the variable ordering to give top priority to variables with current 
degree zero is anyway very sensible, so we feel justified in regarding the whole of the supervariable 
ordering scheme as an efficient means of implementing variable ordering. Several details of the 
coding mean that we rarely get identical results, however. 

Once the supervariable version of MC40 has been employed to order the supervariables, the 
finite elements are ordered in ascending sequence of their lowest numbered supervariable. For 
many problems the number of nodes and edges in the supervariable connectivity graph is 
considerably less than the corresponding number in the variable connectivity graph and, since the 
time taken to run MC40 is dependent upon the number of nodes and edges in the graph, using the 
supervariable connectivity graph instead of the variable connectivity graph can result in 
significant savings in terms of both execution time and storage. This is illustrated in Section 6. 

4. DIRECT ELEMENT REORDERING 

An alternative approach to renumbering the variables (or supervariables) and using the new 
labelling of the variable (or supervariable) connectivity graph to reorder the elements is to reorder 
the elements directly. There are several possible approaches to this problem. Direct element 
reordering is discussed briefly by Akin and Pardue.' The algorithms described by Bykat,* Pina" 
and Fenves and Law6 are direct element-reordering schemes. In particular, the procedure 
proposed by Bykat is a modification of the Cuthill -McKee algorithm (Cuthill and McKeej) for 
reducing the bandwidth of a sparse matrix with a symmetric sparsity pattern, applied to the 
element connectivity graph instead of the variable connectivity graph. Bykat generates an element 
connectivity graph by defining two elements to be adjacent to one another whenever they share a 
common edge and describes his algorithm in detail for planar triangular elements. 

Fenves and Law6 generalize the definition of adjacent elements used by Bykat to problems in n 
dimensions, n= 1, 2, 3. Fenves and Law define two elements in n dimensions to be adjacent 
whenever they possess a common boundary of (n  - 1) dimensions. Thus in three dimensions two 
volumetric elements arc adjacent if they share a common two-dimensional boundary face; in two 
dimensions planar elements are interconnected by one-dimensional boundary lines; and one- 
dimensional finite elements are adjacent if they have a common finite-element node. Fenves and 
Law employ this definition of adjacent elements to generate an element connectivity graph, and 
reorder the elements directly by applying the standard Cuthill-McKee algorithm. 

It was noted by Fenves and Law that the adjacency of elements cannot always be completely 
represented by the above definition of adjacent elements, since n-dimensional elements are not 
necessarily connected through (n - 1)-dimensional boundaries. In addition, adjacent finite ele- 
ments do not necessarily have the same geometric dimensions. In such examples, the element 
connectivity graph may become disconnected, and each component must be numbered indepen- 
dently. This contributes to thc difficulties associated with attempting to implement this algorithm. 

We have adopted a simpler procedure for reordering the elements directly than that suggested 
by Bykat or by Fenves and Law: we define two elements to be adjacent to each other whenever 
they have one or more variables in common. Using this definition, i t  is not difficult to generate the 
associated element connectivity graph; the user does not need to provide information on the 
different types of elements in the grid other than a list of the variables associated with each finite 
element (which is exactly what the Harwell frontal solver MA32 requires). Once the element 
connectivity graph has been generated, the code MC40 may be employed to reorder the elements 
directly. 
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The definition of element adjacency used by Fenves and Law6 was considered for the test 
problems with finite-element meshes in which all the elements were of the same geometric 
dimension. The computed maximum and r.m.s. wavefronts using this approach were marginally 
smaller for some problems compared with those obtained using our simple definition of element 
adjacency, but for other problems the reverse was true. For problems involving different types of 
elements, using the Fenves and Law definition is complicated since it is necessary to distinguish 
between elements of different dimensions and for such problems we employed only our simple 
definition of element adjacency. 

The main disadvantage of reordering the finite-element mesh directly using the element 
connectivity graph in which two elements are adjacent whenever they share a common variable is 
that the number of variables in each element is not taken into consideration. It is anticipated that 
the algorithm will perform at its best when the number of variables per element is relatively 
constant. To allow for finite-element meshes comprising finite elements with different numbers of 
freedoms we have considered modifying the code MC40 when it is applied to the element 
connectivity graph. In the second stage of MC40, we define the priority of node (element) i to be 

where cadj(i) is the number of elements adjacent to i, not including those which have been 
relabelled or are themselves adjacent to a relabelled element, and N ,  is the number of variables in 
element i. The values assigned to the weights determine the importance of each of these criteria. It 
was found that a suitable choice for the weights is W ,  = 12, W, = 6 and W ,  = 1, which essentially 
means that W, affects only the breaking of ties in Sloan’s priority functipn. For each of our test 
problems the r.m.s. wavefront obtained using the third weight W3 was less than or equal to that 
found using the unmodified MC40 code ( W ,  = 0). Results using this ‘weighted‘ direct element- 
reordering algorithm, which will be referred to as the direct element-reordering algorithm 1, are 
included in Section 6. 

The direct element-reordering algorithm I aims to reduce the number of elements which are 
active during the frontal method of solution, where an element is active if it has been assembled but 
not all its variables have been eliminated. Reducing the number of elements that are active will 
indirectly reduce the number of active variables. In an attempt to reduce both the number of active 
elements and the number of active variables, we have considered a slightly different direct element- 
reordering algorithm that uses the element connectivity graph together with the lists of 
supervariables associated with each element. The priority of element i is now defined to be 

Pi = - W ,  * ngain(i) + W, * d(e, i) - W ,  * nadj(i) (12) 

where ngain(i) is the number of variables element i will introduce into the front less the number 
that can then be eliminated, and nadj(i) is the number of elements adjacent to element i which have 
not yet b’een relabelled. It was observed that the choice W ,  = 12, W, = 6 and W ,  = 1 gave good 
element orderings and these values were chosen as the default values for the weights. If assembling 
element i leads to the elimination of a variable v ,  then ngain(i) = cdeg(v), where cdeg(u) is defined as 
in equation (10). In this case, the priority function (12) is therefore Sloan’s function with a third 
weight to resolve ties. If every element leads to an elimination, we have another implementation of 
the Sloan variable ordering (with another tie-breaking strategy). In general, however, this will not 
be the case and the algorithm is therefore different but closely related. This reordering algorithm 
will be referred to as the direct element-reordering algorithm 11. 
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5 .  THE TEST PROBLEMS 

Ten problems are used to compare the element-reordering algorithms outlined in Sections 3 and 4. 
The problems all arise from practical applications. A brief description of each problem is given in 
Table I. Problems 1 4  and 8-10 were taken from the Harwell-Boeing sparse matrix c~l lect ion.~ In 
each example, we were given a list of the unknowns for each element in the finite-element mesh. 
These lists do not include the constrained variables which lie on boundaries with Dirichlet 
boundary conditions. IJsing these lists the element orderings produced by the reordering 
algorithms will differ slightly from those which would be obtained if complete lists of the variables 
associated with each element in the finite-element mesh were available. The number of 
supervariables in each problem was not given but was obtained from the given data when the 
supervariable connectivity graph was generated. 

Table I. The test problems (CEGB =Central Electricity Generating Board; TPD = Theoretical Physics 
Division, Harwell; LSMC = Lockheed Space and Missiles Company) 

Number of 
Number of super- Number of 

Problem Origin Description variables variables elements Elements 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

CEGB 3D model of a 

CEGB Framework 
turbine blade 

problem 
from structural 
engineering 

CEGB 3D model of a 
cylinder with a 
flange 

CEGB 2D cross-section 
of a reactor core 

TPD 2D groundwater 
flow problem 

T P D  2D groundwater 
flow problem 

T P D  3D groundwater 
flow problem 

LSMC 2D model of a 
component used 
in ocean-mining 

of a vehicle 
LSMC 2D model of part 

LSMC Framework model 
or a launch 
umbilical tower 

2694 

3222 

2859 

2996 

2254 

2656 

19197 

69 1 

3416 

2208 

316 108 

537 79 1 

48 3 128 

1418 55 1 

2123 571 

2467 620 
1 

79 

16426 1848 
770 

176 72 
158 
94 

702 72 
10 
48 

556 

368 Y44 

20-node/60-freedom bricks 

2-node j 12-freedom bars 

20-node/60-freedom bricks 

8-node/l6-freedom 
quadrilaterals 
9-node/9-freedoni 
quadrilaterals 
3-nodej3-freedom bars 
6-node/b-freedom triangles 
9-nodel9-freedom 
quadrilaterals 
27-node/27-freedom bricks 
18-nodeil8-freedom 
tetrahedrals 
2-node/6-freedom bars 
2-node/l2-freedom bars 
3-node/lR-freedom triangles 
2-nodej6-freedom bars 
2-node/l2-freedom bars 
3-node/l 8-freedom triangles 
4-node/24-freedom quadri- 
laterals 
2-nodeil2-frcedom bars 



2564 I. S. DUFF, I K. REID AND J. A. SCOT? 

6. NUMERlCAL RESULTS 

The results obtained by applying the different element-reordering algorithms to the test problems 
outlined in Section 5 are presented in this section. Tables I1 and 111 illustrate the maximum and 
r.m.s. wavefronts, respectively, using the Sloan indirect reordering algorithm applied to the 
variable connectivity graph and to the supervariable connectivity graph (with the appropriate 
modification to MC40), and using the direct element-reordering algorithms I and 11. For 
comparison the maximum and r.m.s. wavefronts for the user-supplied element ordering are 
included. Note that, if the maximum wavefront is F ,  the maximum storage required for the frontal 
matrix is F 2  in the unsymmetric case and F ( F +  1)/2 in the symmetric case. 

The reductions which are achieved in the maximum and r.m.s. wavefronts using the reordering 
algorithms are obviously dependent upon the original user-supplied element ordcr. It is clear that, 

Table TI. Maximum wavefronts for the different reordering algorithms 

Algorithm 

Indirect reordering Direct reordering 

User-supplied Super- Algorithm Algorithm 
Problem ordering Variables variables I TI 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

120 
354 
348 
152 
202 
177 
99 5 
316 
834 

1266 

120 
78 

285 
124 
50 
25 

1136 
99 

266 
60 

120 
1 I4 
29 1 
92 
50 
23 

1070 
123 
181 
60 

120 
186 
309 
112 
59 
29 

890 
159 
278 
1 I4 

117 
78 

29 1 
130 
59 
25 

66 1 
114 
217 

72 

Table 111. Root-mean-squared wavefronts for the different reordering algorithms 

Algorithm 

lndirect reordering Direct reordering 

User-supplied Super- Algorithm Algorithm 
Problem ordering Variables variables I I1 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

91.2 
245.9 
216.2 
108-3 
137.0 
121.0 
725.2 
151.5 
583.0 
748.0 

89.7 
60.0 

196.8 
77.6 
35.0 
21.0 

814.3 
66.8 

138.1 
45% 

91.2 
7 3 4  

190.7 
61.5 
35.8 
20.9 

824.1 
77.6 

11 8.0 
45.8 

92% 
126.7 
187.7 
76.7 
36.3 
21.0 

6374 
100.9 
153.4 
86-7 

89.6 
60.3 

190.5 
84.5 
36.6 
20-9 

520.4 
72-1 

134.0 
50.2 
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for some of the test problems, in particular problems 1 and 3, the user was able to provide a 
reasonable element ordering but for most of the problems this was not the case, and the reordering 
algorithms were able to provide significant improvements in the maximum and r.m.s. wavefronts. 
For problem 7, the indirect reordering algorithms produced a worse element ordering than that 
supplied by the user. It should be noted that the reordering algorithms do not guarantee a 
reduction in the maximum and r.m.s. wavefronts in the frontal solver. 

The CPU times required by the element-reordering algorithms for each of the test problems are 
shown in Table TV. ‘These statistics are for the CRAY-2. For each of the algorithms, the CPU times 
are given for generating the appropriate connectivity graph and running the profile reduction code 
MC40. In addition, the total CPU time required to reorder the elements (including the time taken 
to generate the connectivity graph and run MC40), the CPU time taken by the Harwell frontal 
solver MA32 using the new element order, and the total CPU time to reorder the elements and run 
the frontal solver MA32 once are given. For comparison, the CPU times for MA32 using the user- 
supplied element orderings are included. As can be seen from Tablc IV, the most expensive 
procedure considered for reordering the elements is, as predicted, the Sloan indirect reordering 
algorithm using the variable connectivity graph. Considerable savings are, however, achieved in 
the computation times for the indirect reordering algorithm using supervariables in place of 
variables. 

7. CONCLUSIONS 

In this report we have illustrated the use of two distinct classes of methods for resequencing finite 
elements prior to running the Harwell frontal solver MA32. The first class of methods comprises 
indirect element-reordering schemes based on Sloan’s reordering algorithm. The second class of 
methods applies a modification of Sloan’s algorithm to the element connectivity graph and 
directly resequences the elements. The indirect element-reordering algorithms aim to reduce 
directly the number of columns which are active during any stage of the frontal method by 
reordering the elements in such a way as to mimic the desired order of elimination of the variables. 
In contrast, by running Sloan’s profile reduction code on the element connectivity graph, the 
direct reordering algorithm I aims to reduce the number of elcments which are active during the 
frontal method of solution thereby indirectly reducing the number of active variables. The direct 
element-reordering algorithm I1 attempts to directly reduce both the number of active elements 
and the number of active variables, without first resequencing the variables. 

As expected, there is little to choose between the qualities 0s the ordcrings produced by the 
variable and supervariable connectivity graphs (Tables TI and HI), while the time for supervariable 
reordering algorithm is consistently less (Table IV). Of these two, we therefore prefer the 
supervariable reordering algorithm. 

For problems involving solid finite elements, the maximum and r.m.s. wavefronts achieved by 
the dircct element reordering algorithm I1 were generally, but not consistently, smaller than those 
obtained by the direct algorithm I.  However, algorithm I pcrformed poorly on framework 
problems (problems 2 and 10). Therefore, although it is faster to resequence the elements using the 
somewhat simpler algorithm I in place of TI, we conclude that the direct element-reordering 
algorithm I1 should be employed in preference to I. 

For most of the problems considered, the maximum and r.m.s. wavefronts achieved by the 
indirect reordering algorithm using the supervariables and the dircct element-reordering al- 
gorithm I 1  were similar and, for a given test problem, it was not possible to predict which of the 
two methods would yield the smallest values. For the test problems with fewer supervariables than 
finite elements, the indirect method was the faster method, while for problems in which the number 
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of supervariables exceeded the number of elements the direct method proved the faster method. 
We conclude from our empirical evidence that the user may wish to reorder the finite elements 
using either the indirect algorithm applied to the supervariables or the direct algorithm 11. A code 
which implements both the indirect algorithm applied to the supervariables and the direct 
algorithm I1 is to be included in the Harwell Subroutine Library as routine MC43. 
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