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DIXON, J. ; MCKRR, S. 

Weakly Singular Discrete Gronwall Inequalities 

Es werden Vernllgemeinerungen der klaaaischen Gronwallaehen Ungleichung ftir den Fall angegeben, da] der Kern der zu- 
geordneten Integralgleichung schwaeh singulcir ist. Ea wird sowohl die atdige nla auch die diakrete Veraim angegeben. Die 
stetige wurde mit einbezogen, uieil aie eine annloge Beh.ndlunq der diakreten anregt. Die Arbeit wurde durch Konvergenz- 
unterswhungen eon DiakreiiRierungsmethoden f u r  I'olterrmche Integral. und Integro- Differentialgleichungen motiviert. 
Siimtliche Ergehnime werden in finer For~n. gegeben, d k  8eh.r bmuchbnr jiir NppPzinlinten in. Nunieriwhsr Ann1yai.q i d .  

Cenerdizntions of the clnasical Gronwall inequality wh.en th.e kernel o j  Ih.e msocinted .integm 1 equalion. is menkly singular 
itre pre.sented. The continuous and discrete versions are both given; the form.er is included &nce i t  suggests the latter by 
analogy. This work i a  motivated by convergence studies oJiiiscretizntion rn.eth.d.4 for Volterra intsgrnl nnd integro-diJJrentinl 
equations. The reaults w e  nll given in n fm-m deaigned to hc of niozt u.se to n.umrricn1 nn.al?/zts. 

I~pCnCTaRJlRtOTCR ofio6ureHm KnaccwiecKoro tiepaRetrcTRa rpoiryanna R cnyliae 'ITO ~ n p o  CooTHeceMHoro 

BHTM ; trenpepmwmti RapnaaT RKniowieTcn. ~ I O T O M Y  VTO oir npennaraeT aHanorwiiIyn) 06pafiOTKy. 3Ta 

MHTerpanbHMx H uifferpo-nlrTerpanhlri,ix ypaBiretrHH T H I M  13nnrsTeppa. Rce pe3ynLTaThI OnHChlRRIOTCR 

HHTeI'paJIbHOrO ypaBlreHHfl HRJIHeTCR Cna60-CHHrynRplIi~lM. ,&LiOTCR H liellpepblRHb1ii H JIHCKpeTHhlfi Ba1)H- 

pabOTa llO6y>H&aeTCR HCCJle~ORai~HRMH IT0 CXOj(HM0CTH OTtIOCHTeJII,IIO MeTOnOB nUCKpeTU3aUHK AJIH 

R TaKOM BHAe YTO OHH fil3JlIllOTCH O'ICHh ITOJIe3HldMH nnIl ('ITeIIHaJlWCTOR ll~MC~)~lleCHO~O A H a J l H 3 a .  

1. Introdiiction 

In 1919 C ~ ~ N W A I . I .  [ 121 introduced the following result: 

Lemma 1.1 : Let the function x br continwnis cind non-nrgntir-e on the intaroal [0 ,  TI. If 
1 

r(t) 5 n + b r(s) d.s , 0 t 5 T , (1 .1 )  

x ( t )  5 a elJt, (1.2) 

0 

where n ,  h NTC positiw ctn,strinte, then 
0 5 t 5 T . 

This lemma, which provides a bound on the solution of (1.1) i n  terms of the solution of the related integra 
equation 

t 

y ( t )  = + b S y ( s )  d s ,  0 5 t 5 T ,  (1.3) 
0 

is one of the basic tools in the theory of differential equations. It has been extended and used considerably in 
various contexts, and Gronwall inequalities has now become a generic term for the many variants of this lemma. 
A reasonably comprehensive account of Qronwall inequalities is given by BEESACK [3]. 

In the Picard-Cauchy type of iteration for establishing the existence and uniqueness of solutions of differential 
and integral equations lemma 1.1 and its variants play a significant role. This is demonstrated by, for example, 
WALTER [29]. Inequalities of the type (1.1) are also encountered frequently in  the perturbation and stability theory 
of ordinary differential equations, for instance, see BELLMAN [ 11. 

Recurrent inequalities involving sequences of real numhers, which may he regarded as discrete Gronwall 
ineqiialities, have been extensively applied i n  the analysis of finite difference equations. 1 n numerical analysis the 
following discrete analogue of lemma 1.1 is widely used. 

Lemma 1.2: Zf x,, i = 0, 1,  ... , N ,  i s  a sequence of non-negrrtire rrnl niimhers antisfying 

where b > 0 nnd M > 0 i s  hmmded independently of h ( N h  5 T )  then 

xi 0 exp ( M i l l ) ,  0 5 i 5 N . (1.5) 
The main value of this lemma is that i t  can be used t o  demonstrate convergence of the solution of some dis- 

cretization to  that of the corresponding operator equation. This necessarily requires that  the difference between the 
discrete solution and its associated operator equation, that is, the seqiience { xi}:=o, he uniformly bounded with 
respect to Nand h where Nand k are such that N h  remains constant as N 4 00 and h + 0. InNz [20] and HOLYHEAD, 
MCKEE and TAYLOR [17], for example, consider linear first kind Volterra integral equations, and HENRICI [ 131 
provides an elementary introduction to the application of this result to  ordinary differential equations. 

More recently discrete generalizations of Gronwall's inequality have been diwussed by several authors, 
notably PACHPATTE [23] and POPENDA and WERBOWSKI [24], and since the completion of thiR manuscript the a tkn-  
tion of the authors has been brought to a paper by BEESACK [4]. 

The piirpose of this paper is to derive generalized discrete (:ronwall inequalities in a form which may be 
d i r e c t l y  applied by numerical analysts when proving convergence of product integration methods for weakly 
singular Volterra integral and integro-differential equations. I t  is anticipated that in a numerical scheme as the 
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stepsize h is decreased to zero the discretization will in some sense tend to  the underlying integral equation. It 
therefore seems natural to expect that  any analysis for the integral equation will have a parallel i n  the discrete 
problem. Following this view a continuous generalization of Gronwall's inequality is first presented and then dis- 
crete manipulative steps, analogous to those employed to  derive the continuous inequality, are used to obtain the 
main result of this paper, a generalized discrete Gronwall inequality. 

Illustrative examples of the application of these generalized Gronwall inequalities are given ; further examples 
of the use of these inequalities in deriving convergence results for Volterra type equations may be foiind in RRIJWNRR 
151, CAMERON and MCKEE [6], DIXON and McKm 191, TE RIELE [26] and Scow (261. 

-~ ___ ._ 

2. A linear generalizat,ion of aronwall'R ineqiialit,y 
The following standard reRolt from fiinctional annlyRiR will be required. 

L e m m a  2.1: Let X be n Bannch. npm with nnrm 1 1 . 1 1 . ~ .  n,nd let L ( X )  denote the Bn.nach s p a  oflinen,r oppmtnrs jroar .K into 

If K E L ( X )  i s  8mh. that llKrll < 1 jor .qome r E &'then C K n  conrwrp  nnd is the inverse of ( I  - K ) .  

The above lemma may be used t.o obt,nin the following elementary exiAtmce result for linear second kind Volterra integral 

T h e o r e m  2.1 : For each t E Q := [0, T] let the Volterra kernel k( t ,  a )  be integrable over (0, t )  n,s n junction of 8.  Suppose that for 

itnelf. m 

f l = O  

equations. 

aome p E N the pth iterated kernel k'(")(t, 8) ia continuous on D := { ( t ,  n )  : 0 5 8 5 t 5 T). 
Then for each y E C(0) the integral equation 

Y = Y + K Y ,  (2.1) 
t 

where ( K y ) ( t )  = 1 k( t ,  8 )  y(8) d8, t E Q, ha8 a unique solution y E c(n) given by 
0 
a 

n = o  
y = K"y . (2.2) 

Y =  C Y "  (2.3) 

Equiirdently 
W 

n=1 
where the sequence { y " } ~ ~ ,  i s  defined by yl = y, y" = Ky-', n 2 2. 

F u r t h e r w e ,  there exiets a conatant C, independent of y, such t h d  

Note tha t  the series a t  (2.2) is the resolvent series and tha t  a t  (2.3) is the Neumann series. 
The theorem is proved by showing that  llKrll < 1 for all r sufficiently h r g e  and then employing lemma 2.1. 
L e m m a  2.2: Let the Volterra kernel k(t ,  8 )  eati8fy 

IlYllm S Cllyllm. (2.4) 

(CI) k( t ,  8 )  is non-negative; 
k( t ,  8 )  i8 integrable over (0, t )  as a, junction oj  8 for each t E Q; 
there exid8 }i E A' such. 1h.n.t /he 11th. itern.ted kernel p(t, 8 )  i s  continuous in t ,  8. 

( C W  
(CIII) 
Ilejine F E L(C(0)) by 

F y  == y - K y  (2.5) 
t 

where ( K y ) ( t )  = J k(t ,  8 )  y ( s )  d8, t E R. W e n  E'y 2 0 implie8 y 2 0. 

The p r o o f  follows tha t  of theorem 5 of BEESACK 123. 
The following linear generalization of Oronwall's inequality is a direct conaequence of lemma 2.2. 
T h e o r e m  2.2: Let the Volterra kernel k( t ,  8 )  sntinfy CI-CIII. For any y E c(0) ifx E c(a) aatiafiea the integral inequality 

0 

x s y + K i r ' r  (2.6) 
t 

where (Kx) ( t )  = j- &(t, 8 )  4 8 )  ds, 1 E Q, then 
0 

X S Y  (2.7) 

Y = Y  f K y .  (2.8) 

I I 4b  5 Cllr~llm. (2.9) 

where y i s  the unique C(Q) nolution n j  the integra.1 equation 

Furthermore, if x 2 0 and y 2 0, there exieta C, independent of y. azleh that 

The bound (2.7) is the beat possible result since equality in (2.6) implies equality in (2.7). For the cam p = 1 the inequ8lit.y 

The results stated in this section are ementially well-known ([2], [3], [la], [IS], [27], [28]). They have been included since i t  is 
felt that a numerical analyst may not be particularly familiar with them and, more importantly, to emphasise the Rtrong similarit.iefi 
between t'he continuous rrsnlta given hem and the analogous discrete results which will be derived in section 4. 

(2.7) wns first given by CHU nnd RfETCALF [a]. 

3. A weakly singular integro-differential equation arising from the diffusion of discrete particles 
in a turbulent fluid 

Consider the weakly singular integro-differential equation 
I 

(3.1) 
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with y(0) given, c a constant and 0 5 (Y < 1. It is assumed that  f ( t ,  y) and q(t) are continuous on D x R and D 
respectively, and that  f ( t ,  y) i s  (uniformly) Lipschitz continuous in ?/. When (Y = f (3.1) models the motion of 
a particle in a turbulent fluid; further details are given in MCKEE [21]. 

Equation (3.1) will be used to  illustrate the results of the previous section, and in section 6 convergence of a 
numerical method for solving (3.1) will be proved using a discrete analogue of theorem 2.2. 

Tntegrating (3.1) over (0, t), interchanging the order of integration and integrating by parts yields 

~ _ _ _ _ _ _ _ _  _______ 

(3.2) 

Jnvestigating the effect of the perturbation 011 the solution motivates the following result. 
Theorem 3.1 : h t  r ( / )  be continiroits and nmz-nPqntive on [0, 7'1. If 

1 

(3.3) 

where 0 
stant, t h m  

IY < 1, y ( t )  is a non-negative, monotonic increasilig continiious function on [0, TI and M is a positive con- 

r(t) 5 y( t )  E ~ - ~ ( f i l T ( l  - a) t l - a )  , 0 5 t 5 T , (3.4) 
w h w e  El " ( e )  i R  t h P  Mittag-Leffler functimz defined for all IY < 1 hg 

The Mittag-lleffler function, which is a generalization of the exponential function to  which i t  reduces when 
IX = 0, has been discussed in the literature and references may be found in ERD~ELYI [lo] (see also FRIEDMAN [I l l  
and KERSHAW [18]). 

This result follows by showing that the solution of the related integral equation 
t 

y(1) = y ( t )  + M/*ds, ( t  - s)" 0 5 t 5 T ,  
n 

(3.5) 

satisfies 

? / ( t )  y ( t )  I C I . . m ( M r ( l  -a) 1 ' .  ") , 
end invoking theorem 2.2 with p = e + 1 where e E Bv is chosen such that (e - l)/e < u 5 e/(e + 1). 

rily monotonic) the best po~~sihle result is given by 
If y(t) E y, 0 5 t 5 T, (3.4) is the best possible result. For a more general function y( t )  (which is not necessa- 

t 

(5.6) 

where t,he right hand sidr of the inequality (3.6) is t h e  exact solrit>ion of the integral equation (3.5). 

4. A discrete existence rcrJiilt 

Discrete manipulative steps, arralogoiis to those wed in the continmiis proidem, are employed to derive a discrete 
version of theorem 2.1 and, in the next section, of theorem 2.2. 

A discrete version of thr space C(Q)  is required. Let I&,,, T be given with 0 < I), ,  5 7' and T/h, = No, a, positive 
integer. Define J := { h :  k = TIN, N E M, N 2 N o }  and for ?A E J set Dh = { 0, 1, ... , N ) .  Define the discrete space 

C(Szh) := {?/" : ?p =: (yo, ?/I, ... , ? / N ) T  , ? / I  E 8 , 0 5 i 5 X} 

with the maximiim norm 

The idea of discrete Volterra kernels and discrete iterated kernels will be required (cf. DIXON and MCKEE [9] and 
SCOTT [26]). 
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Def in i t i on  4.1: Let the  discrete function kij defined on the integers i ,  j ,  0 5 i ,  j 5 N ,  satisfy kij = 0 for 
j 2 i. The discrete iternted kernel8 k($, n. = 1 ,  2, ... , of the discrete Volterra kernel kij  are defined to he 

i - I  . .  

/$y = k... ];(??) = 11 k j p - l ) ,  7) 2 3 
l = j i - l  

(Here and elsewhere i t  is assumed that 
2 2.) 

rf ' I '  1 )  

D, = 0 and n B, = 1 if 0 is the empty set; thus kj?, = 0 is assumed for 
jsL3 j€fl 

- I  

A discrete version of theorem 2.1 is now presented. i - 1  
Theorem 4.1 : Let k,, be n disrretr Voltcrrci kernel nnd for enrh 1: E Qh let h 

Then fm each 11 E J n w l  y h  E C(Q'') the discrete opercitor cpnt ion 

k,, be holcnnled indrpmdrnt ly  oJ h .  
j = O  

S w p p w  that for some p E 9 the pth discrete i t c w t d  k e r d  k$) is bmritdcd in i, j, independently of Ii. 

!IA = th + Kh!!/' , (4.1) 
1 1  

tohew ( Kh!jA)), = h 2' kVy j .  i E QA, I t t i s  ri i in iqi ie  solirtion !Ih c C ( 0 " )  f j t * r n  h?j 
J - 0  

m - 
= c (y")" , 

fl=l 

whrre the seqwiice { (yh)"}r71 i s  defined b y  (yh)l = y h ;  (y'))" = Kh(y")"- , n 2 2. 
Furthermore, there exi.sts (1 constant C ,  independent of yh nnd h ,  s w h  thnt 

(4.2) 

(4.3) 

l l ?A lm s CIlyhIIcc * (4.4) 
The scrim at, (4.2) is the nnnlopue of the resolvent series while that, at (4.3) is the analogue of t,he Neumann 

Proof :  By repented s~ihst~ili~t~inns for yh in the right hand side of (4.1) it i H  straightfnrward t.o show thnt, 
series. 

yh = @h + k h y h  

I' - I i -1  
where $" = C (KA)"$' E C(Qh) nnd ( k ' ' y L ) i  = h z kyj)yj, i E Qh. For n 2 1 

n=n j - 0  

where ~Ikh( ' ' ) /~m := max lk$)[ < 11.1, with A1 independent of h. This is trivially true for n = I ; assume inductively thnt i t  is true for 
some n 2 1. i , j  

I t  cnn be demonstrated that for any integers p, q 

and thus 

which completes the induction. 
i-1 

.;=o 
Since ((k*)" y*)i = A z k p ) y j ,  i E Rh, i t  follows thnt ' 

1 
Rounding t.he summation hy the integral f ( i  - s)"-' ds nnd using ih 5 N h  5 T then givw 

0 

T" II(i*)"II = II(K*)"/qI 5 l lk*(qlk 

yh = ; ( i h ) "  ip . 
Therefore for r sufficiently large II(kh)'ll < 1 nnd applying lemma 2.1 with X = C(f2") yields 

n = o  

Substituting for kh, yields the discreta resolvent Rolntion 
W 

y h  = z (K')" yh . 
n=u 

(4.5) 
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The equivalent discrete Neurnann series (4.3) can be derived by using induction to prove t,hat for n 2 1 
(v')' = ( K h ) n - l  y" 

To obtnin (4.4), taking norms a t  (4.5) 

j r -  1 

I t  = n 
IlPIlm 5 Z I l ~ L I I "  l l ~ J h l l ~  9 

i - 1  

j = o  
nnd J(K"(1 in lmtnded independently of k ,  since h z kij is bounded independently of h for each i E Oh. The requiredresultfollows. 

O b m v *  tlint. (1 .1 )  is mcrcly n strictly lower trinngiilnr system of equations so that (4.2) is eqiiivrtlent to the 

= 2 ( K h ) , '  y h  (4.2') 

finite slim 
'V 

n - n  

and (4.3) is cqiiivalfwt to  
N + l  

n - 1  
= c (y")" (4.3') 

since (Kh))"+' = 0. This apparently suggests tha t  the above analysis, which showed that under the hypothesis of 

the theorem 2 ( K h ) n  and 2 (yh))" converged, was unneceasary. However discrete Gronwall inequalities are to be 

derived to be employed in convergence analysis for numerical schemes; the parameter h will then represent the 
steplerigth and to  prove convergence i t  will be necessary to let h + 0 while N + 00 with N h  fixed. It will therefore 
he more useful when considering convergence to  use (4.2) and (4.3) in place of (4.2') and (4.3'), respectively; the 

nsaiimptions h kij 5 M and ~ ~ k ' ~ ( ~ t ) ~ ~ O O  5 M', with M ,  &I' independent of h ,  will then ensiire that  the constant C 

i n  (4.4) is independent of h and N. 

00 m 

n - 0  n -1 

i -  1 

J '1 

5. A generalized discrete Gronwall inequality 

The following lemma and theorem are analogous to lemma 2.2 and theorem 2.3. 
L e m m a  5.1 : Let the discrete J'olterra kernel ki, satisfy 

(DI) k;j b non-negative ; 

(DTI) 
r 1  

h C kij i s  bminded independently of h for each i E Oh; 
j = O  

there exists p E h' mcch that the p th  discrete iterated kernel k$) i s  bounded in i, j ,  independently 
of h .  

(DI11) 

Define Fh E L(C(OA)) by 
Fh?jA = y" - KhIJ" (5.1) 

1-1 

where (Khyh) (  = h 2 kl,yj, i E Oh. Then Fhgh 2 0 implies ?/" 2 0. 

8ati.qfieR the discrete integral ineqicnlity 

j = o  

Theorem 5.1 : Let the discrete Volterm kernel kiJ satisfy IIJ-DTTI. For h E J and any y h  E C(O"), if xh E C ( G h )  

d' 5 yh + K h x h ,  (5.2) 
a-1 

where (K'x'), = h 2 k,xj, i E Oh, then 
j = n  

2" 5 ?? (5.3) 

2/" = y h  + K h y h .  (5.4) 

llz"ll00 5 CIIyhllOO * (5.5) 

where fl is the unique C(Gh) sollition of the discrete integral equntimz 

Furthermore, if r" 2 0 and yh 2 0, there exists C ,  independent of yh and h ,  such that 

The importance of C being independent of h is that  when the above result is employed t o  prove convergence of 
some discrete algorithm the bound (5.6) will imply the order of convergence depends only upon the order of the 
consistency error yh. 
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6. A discrete Ahel's singularity 

.. ~ __- ..- 

In  this section the results of section 5 are used to derive a particular discrete Gronwall inequality which may be 
employed to prove convergence of product integration methode for ~olving Volterra integral equatione with weakly 
singular kernels. 

Lrmmrt 6.1: LetO<ar < 1, y <  1,/? 2 1. Then f o r 0  5 j 5 i - 1 

initere n(u, h )  i s  the Bdn function dpfincd for Re ( n )  > 0, Re ( h )  0 h!y 
1 

P r o o f :  'i'hr summnticin i H  rompnrrd with tho integral 

trented as nn area under a curvr. Let, 

If 0 < n < 1, y 5 0 and /3 2 1, f is the prodiict of three nondecreaeing functions, RO that 

i -1 kp-1 i - 1  k+1 +l 
~ -< J ---- . ~- . &  

/ , - - j+ i  (rfi - LJ)- ( k p  -jp)7' k:j+l k (ip - $))" (2 - j S ) v  

and t'hc required bound follows by evaluating the integral ueing the change of variuble ap  = j p  -1 ( ip  - j p )  w .  
Snppose 0 < a < 1, y > 0 nnd p 2 1. The dcrivat,ive off vaniehes when 

s')@(1 - /I - ap - 1 .  lip) -1- 

This is a quadratic in -9'. Since f is positively infinite a t  s = j and s = i the quadratic must have a t  least one real root in (j, i )  and 
consequently both roots must be real. 

This implies thatf'(s) vanishes at at most four real points, of which at most two can lie in the interval (j, i). It follows that  
t.here exists only one turning point in (j, i )  and that t,his point is a minimum. Let the minimum occur at a = a* E (j, i) and let 1 be 
the largest integer such that 1 5 s*. Splitting the summation over k = j + 1 to k = i - 1 into two summations 

- j P )  ( p  - 1) -- m p j P  - yfi jp) - iPj"(fi - I )  = o . 

I kp-1 i - 1  kb-1 z -  + c .. 

k = j + l  (is - ap))" ( k p  -jf i) l '  k = I + 1  (ip - p))" ( k p  - jp)? 

and interpreting the first sum as the forward rectangular rule and the second ns t.hr backward rect,angolar rule, it may he men that  

(see fig. 1 whcre t,ho dinding repre.sents tlic clummnth). 

I \  I 

, T  1 heorem 6.1 : Let xt ,  0 5 i 5 N ,  he n sequence of nun-nepttine real numhers sa t i s f y i y  

w?&ere 0 < OL < 1, M > 0 i s  bounded independedg of h,  and yi, 0 5 i 5 N ,  i s  n monotonic increasing sequence of 
non-negative real numbers. Then 

ri 5 ~ , l C 1 - ~ ( M l ' ( l  - a) (ih)*-)"), 0 5 i 5 N . (6.2) 
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i - l  

j = o  
where N h  5 1'. Therefore h kij is bouiided iiidepeiidently of h for each 4, 0 5 i N .  

Let Q E N be chosen so that e* 5 a I ~ . It can be shown by induction wing lemma 6.1 with /l = 1 that the discrete e - e + l  
iterated kernels of kjj where k . .  = M(h( i  - j ) ) - a  satisfy tl 

where dl' ie a positive constant bounded independently of Is .  Thus DI-DIII are satisfied with p = e $- 1, and invoking theorem 8.1 

wlicrc 
~ i s y i ,  O s i s N ,  

Prom tlicorem 4.1 
m 

11 - 1 
yi =i z ((v")")i, 0 5 i 5 N , 

auid usiiig induction it is atruightforward to demonetrate that for all 91 2 1 

Helice 

xi  5 ~&'l-u(dfI'(l  -a) (ih)'.-&), 0 2 i 5 N .  
Notc t1lBt 

IlE'qlw 5 ClIW"JJU, 

whew C -- PI. ,(ilrl'(I - a) Y" .") is Louitdud iiidepiidciitIy of /G. 

MuKm 1221 has alvo considered inequalities of the forin (6.1). The Hame inequality lies bee11 coilsidered liere 
not olily because i t  shall be employed to prove coiivergeiiee of product integration methods but also because i t  
provides a useful example of the more general discrete Gronwall inequality derived in section 5. Moreover the bound 
(6.2) is both sharper arid more elegant than that derived by MCKEE. 

Exam plc G.1: Consider the wuakly singular integro-differentia1 equation discussed ili ecction 3, iiunicly 
1 

y'(1) - y ( t )  -k J ( t ,  y(L)) -1 c J(t")a - -  __- dY, 0 t 1 ' ,  (6.3) 
0 

w h e r e O s a <  1. 
An Euler-type method combined with the simpleet product integration method yields the following approximating equation 

&yh) = 0 ,  yh: C(@)  4 C(J2") 
wliorc 

Summing the equation 
i -1 

j = O  
Yi - li-1 = hY(l,) -1- Ilj(ti, Yi) -1- ch z qj(yj+l  - Yj) 

over i = I tu 1 and interchanging the order of summatiou 

which is the discrete analogue of equation (3.2). 
The true solution y(tt) satbfies the perturbed equation 

h 

(6.4) 
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That is 

In general the solution y ( t )  of (8.3) will have a discontinuous second derivative a t  thc origin, but will possess continuous 
dcrivutives away from the origin (see BRUNNER [5]). It can then be shown tha t  

for some Y independent of h. Details may be found in SWTT [26]. 
lTil 5 Mh'-' + O(h)  

Letting xi = ly(tf) - ytI it follows, assuming the starting value is accurate of order 1, tha t  

for somc C, M independent of h. 
It  is straightforward to show tliut for 1 sj 5 i 

( h ( i  - j))-u 
(1 -a) 

0 < Wij- 5 - ~- , (0-a = 1 ) .  

Tliercforc 

C A A  A 

wlicrc C' = (:/(I - h), AI' = M/(I  - L I ~ ) ,  Ai' = M / ( L  - LIL) are i.mrndcd indcpcnctciitly A. 
liivokiiig tlicorein ti. I wiLh yi = C'h - 1  N'h' 

xi 5 (C'h 4- M ' h P u )  E,_a(h' l ' ( l  ~ .x)  1;  ") , IJ 5 - i 5 N . 
'rl~is proves convergence of order at lcast I - a. 

If y E U2[0, T] then ITil 5 Cih, I 5 i 5 A'. and the luctllod is the11 convergent of order a t  lcast 1. 
E x a n i p l c  ti.2: As u. further cxamplc to  illustrutc u n  applicution of theorem 6.1 consider the secoiid kind Volterra iiit.cgral 

equation 
I 

(6.5) 

I t  van again be sliown that for Runit: ill, indepciidcnt of L ,  

(J :< wij '=: Af (h(i  - j))-' , 0 5 J 5: i 5 N , 
where 3 1. 

Tlic true solution y satislies the perturlrd equation 

That is, 

Provided Q(t, s, y) is (uniformly) Lipschitz continuoua in y 

lTtl 5 Cih' + O(h8+l)  
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where 
if y has discontinuous derivatives at the origin 
is smooth on [O ,  TI . 

Therefore, zi = I&,) - yj( satisfies 

and for h sufficiently small 

where L', 6'' are independent of h. 
Convcrgence of order 9 followli on applying theorem 6.1. 

The above convergence analysis of the discretization method (6.5) is more straightforward than that given 
by KE~slrAw [ 181. Furthermore, it is clear that  the analysis may be extended to  general product integration methods. 

7. Furthor generalization of Gronwall's inequality 

(:eiieralizations of theorems 3.1 and 6.1 arc given for Volterra integral equations with a11 Abel's type singularity 
of the form 

t 

wlicre 0 < n < 1, @ 2 1 atid C(/, s, y) satisfies tlic Lipacliitz coiiditioii 

IW, 8 ,  yd  - w, 8,  y,)l d w y ,  - y,l 
for 80111~: iioii-iicgativc cotivtaiitv L, a with a 2 /l - 1.  

where IX = f, /I = + and a = 1. 
11 practical exit~nph of equation (8.1) with /j # 1 ia give11 hy ~ l IUl lTIIILL [19] and by ( k 4 M U H h  Wid ACR~VVH [7] 

Theoren1 7.1: Let  iiic functioa x be cwitiimous uiid ?ton-negutive ON [0,  2'1. If 
1 

(7.2) 

wlicrc 0 < R: < 1,  1 5 @ 5 a + 1,  a 2 0, M is a positive cwietunt und y ( t )  is u cvntiwous, nmt-ucyutive nionotonic 
iiicreusiiiy furtclioii 071 [0, TI, thcri 

I n  the speciul cuse a + 1 - /I = 0 (7.3) red.zices to 

Theorem 7.2: Let xi, 0 5 i 5 N ,  be u sequmce of nw-?ieyutiue recll numbers. If 

(7.3) 

(7.5) 

(7.ti) 

where 0 < n < 1, 1 5 /j 5 a + 1, a 2 0, M is u positive constunt, und Vi, 0 
seguerice of ~ioii-neyutive reul numbers, then 

i 4 N ,  is a monotonic increusirtg 

When a + 1 - = 0, 

O $ i s N .  

The proofs of theorems 7.1 and 7.2 employ similar arguments to thoee already presented and 80 are omitted 
(SCOTT [26]). 



1 h L L R l  AN, It., 8t;ibility ‘I’heory in Ordiilnry 1hffcreiit.iiiI h~yual~ioiis, I\.lcGriiw-Hill 1953. 
2 UEICYACK, 1’. It., Coiiiprisou tlieorema and intugrul incyiidities for Voltcrrn irit.cgr;ll ccl~ial.iulls, .Pruc. Amer. Blath. Soc. 20 

3 BEESACK, 1’. It., Uronwall Inequalities, Curleton Math. Lecture Notes No. 11, May 1975. 
4 BEESACK, P. H. ,  More generalized discrete Gronwall inequalities. ZAMM 86 (1985) 12, 589-595. 
5 BRUNNER, H., The approximate solution of Volterra equations with nonsmooth solutions, SIAM J. Numer. Anal., to  appear. 
6 CAMERON, R. F.; MCKEE, S., Product integration methods for second-kind Abel equations, J. Comp. Appl. Math. 11 (1984), 

7 CHAMBIIE, P. L.; Acxivos, A., On chcmical surface reactions in laminar boundary layer flows, J. Appl. Phys. 37 (1956), 1322 

8 CHU, S. C.; METCALF, F. T., On Gronwall’s inequality, Pror. Amer. Math. Soc. 18 (1967), 439-440. 
9 Drxo~,  J. A.  ; MCKEE. S., A unified approach t,o convergence analysis of disc!ret,iziit.ion met,liods for Volterra type ecluatioiis, 1MA 

(1969), 61 -66. 

1-10. 

to 1328. 

J.  Numer. Anal. 6 (1985), 41-57 
1 0  P ~ I J ~ L Y I ,  A. (ed.), Higher Trunsccndential Functions. Yol. 111, McChw-Hill 1956. 
11 FRIEDMAN, A., On integral equations of Volterra type. J. Anulyse Math. J I  (1973), 481 -415. 
12 GRONWALL, T. H., Note on t,he derivatives with respect to  a parameter of the solutions of a system of ordinary differential equa- 

13 HENBICI, P., Discrete Variable Methods in Ordinury Diiierrntial Equation#, John Wiley 1962. 
14 HILLE, E., Lectures on Ordinary Different,ial Equations, Reading, Mass. 1969. 
19 HILLE, E., Methods in Classical and Functional Analysis, Reading, Moss. 1972. 
I6 HOCHYTADT, H., Integral Equations, Wiley - Interscience 1972. 
17 HOLYHEAD, P. A. W.; MCKEE, s.; TAYLOR, P. J., Multistep methods for solving liiiear Voltcrru iiitcgral cqiuttions of the first, 

18 KERSHAW, I)., Some results for Abel-Volterra intcgrul eyuatione of t,hc second kind. 111: UAKEI~,  C. T. H. ;  MILL”, G .  b’. (eds.): 

19 LIQHTHILL, M. J., Contributions to the theory of heat t.ransfer through a laminar boundary layer, Proc. Roy. Soc. Ifindon, Her. A 

20 IJNZ, P., Numerical methods for Volterra int.egral equations of thc first kind, Coinpiit. J. 12 (19tiY), 3’93-397. 
21 McKxu, S., The analysis of u variablc step, variable coefficient linear multistep method for solviiig a singular integro-differential 

22 MCKEE, S., Gonera.lised discrete Gronwall lemmas, ZAMM 62 (1D82), 429-434. 
23 PACHPATTE, B., On the discrete generalizat.ion of Gronwall’s inequality, J. Indian Math. Soc. 37 (1973), 147- 1.56. 
24 YOPENIJA, J.; WERHOWSKI, J., On the discrete analogue of Gronwall’s lemma, Faseiculi Matliematici 11 (1Y71)), 143-154. 
25 RIELE, H. J .  J .  TI., Collocation nictliods for wcukly tlingiilar secoiid-kind Voltcrra integral equations with iion-smooth solution 

26 Smm, J. A. (n6c DLXON), A Unified Analysis of Diacretizatioii Melliodu. 1). l’liil. thesis, lliiiversity of Oxford 1984. 
27 TIIICOMI, F. G., lntcgral Equations, Wilcy-Int’crscicncc 1957. 
28 J’USIII~JA, K,, l ~ ~ * t u r c s  0 1 1  Diffcrcnt ial and Integral Eyuations, Wilcy - liitersciencc 19tiO. 
2!) \VAi;rm, W., Diflerciil.ial iiiitl I nl(*griil Inccliiulitic~s, S11riiigcr-Vcrliig, ~(.rliii-Hcidclbcrbr-Nc.w York 1970. 

ltcccivotl AiigiisL 2, IW4, ill  i.ovixcd foriii I ~ I J ~ I I : L ~ Y  25, 1986 

;Iddrcna: 1)r. J E N N I Y K I I  DIWN. NaLioid ltadiological Protectioii Board, Chiltoii, Uidcot, OXON, England; 

tions, Ann. of Math., Ser. 2, 20 (1919), 292-296. 

kind, SIAM J. Numer. Anal. 15 (1975). 698-711. 

Treatment of Integral EquatioiLs by Numerical Methods, Acudcmic Press 1982. 

905 (1950), 359-377. 

equation arising from the diffusion of discrete particles in a turbulent fluid, J. Inst. Math. Applics. 28 (1079), 373-388. 

IMA J. Nu1nc.r. A n d  f (198!), 137-449. 

Professor SEAN MuK EY, 1)cpartmeiit of Matlicmatics, Univeraity of Strath clydc, Glasgow, Scotlitiid 




