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Weakly Singular Discrete Gronwall Inequalities

Es werden Verallgemeinerungen der klassischen Gronwallschen Ungleichunyg fir den Fall angegeben, daf der Kern der zu-
geordneten Integralgleichung schwach singulir ist. Es wird sowohl die stetige als auch die diskrete Version angegeben. Die
stetige wurde mit einbezogen, weil sie eine analoge Behandlung der diskreten anregt. Die Arbeit wurde durch Konvergenz-
untersuchungen von Diskretisierungsmethoden fiir Volterrasche Integral- und Integro-Differentinlgleichungen motiviert.
Sémtliche Ergebnisse werden in einer Form gegeben, die sehr brauchbar fiir Spezialisten in Numerischer Analysis ist.

Generalizations of the classical Gronwall inequality when the kernel of the associated integral equalion is weakly singular
are presented. The continuous and discrete versions are both given;the former is included since it suggests the latter by
analogy. This work is motivated by convergence studies of discretization methods for Volterra integral and integro-differential
equations. The results are all given in a form designed to be of most use to numerical analysts.

ITpencrapaswTca o6oGIeHHA KIacCHUECKOT0 HepaReneTna I'poityanna g cayuae 4To AP0 COOTHECEHHOrO
HHTErpaJIbHOro ypaBHEHUA ABINAETCA caalo-CHHTYAAPHbLIM. L[al0TCA U HellpephIBHbI U AUCKPEeTHHH BapH-
AHTH; HENpEepPHIBHHII BapUaHT BKJIIOYAETcA, 1I0TOMY YTO OIf MpejuiaraerT avajoraunyio oGpaboTky. Jra
pafora nofy:kaaercA HUCCHAeJOBAHMAMU MO0 CXOJIMMOCTH OTHOCHUTENLIT0 METOJI0B JIMCKDeTH3auuu A
MHTErpajlibHBX ¥ HHTErpo-uliterpalibHniX ypasHeHuii THna BoJdwreppa. Bee pesyanTaThl onuchiRaloTcs
B TAKOM BHJE YTO OHYU ABRJIAIOTCHA OUCHb NOJE3HLIMHU JIJIA CTIEIHANHCTOR HYMEPUUECKOr0 aHaAIU3Aa.

1. Introduection

In 1919 GronwaLL {12] introduced the following result:

Lemma 1.1: Let the function x be continuous and non-negative on the interval [0, T). Tf
!

)y SLa+bfas)ds, 0L1£T, (1.1)

¢
where a, b are positive constants, then
z(t) £ aet, ot T (1.2)
This lemma, which provides a bound on the solution of (1.1) in terms of the solution of the related integra
equation

t
y(t) = a + bof y)ds, OSt<T, (1.3)

is one of the basic tools in the theory of differential equations. It has been extended and used considerably in
various contexts, and Gronwall inequalities has now become a generic term for the many variants of this lemma.
A reasonably comprehensive account of Gronwall inequalities is given by BErsack [3].

In the Picard-Cauchy type of iteration for establishing the existence and uniqueness of solutions of differential
and integral equations lemma 1.1 and its variants play a significant role. This is demonstrated by, for example,
WALTER [29]. Inequalities of the type (1.1) are also encountered frequently in the perturbation and stability theory
of ordinary differential equations, for instance, see BELLMAN [1).

Recurrent inequalities involving sequences of real numbers, which may be regarded as discrete Gronwall
inequalities, have been extensively applied in the analysis of finite difference equations. In numerical analysis the
following discrete analogue of lemma 1.1 is widely used.

Lemma 1.2: If x;,7 =0, 1, ..., N, is a sequence of non-negative real numbers satisfying

i1
%m<h, w=by MY, 1SisSN, (1.4)
<

where d > 0 and M > 0 18 bounded independently of h (Nh < T) then

z; = d exp (Mih), 0<LiI<N. (1.5)

The main value of this lemma is that it can be used to demonstrate convergence of the solution of some dis-
cretization to that of the corresponding operator equation. This necessarily requires that the difference between the
discrete solution and its associated operator equation, that is, the sequence {z;}#_,, be uniformly bounded with
respect to N and & where N and % are such that Nk remains constant as N — oo and & — 0. Linz[20] and HoLvugaD,
McKEE and TavrLor [17)], for example, consider linear first kind Volterra integral equations, and HExRIcL [13]
provides an elementary introduction to the application of this result to ordinary differential ecuations.

More recently discrete generalizations of Gronwall's inequality have been discussed by several authors,
notably PacupaTTE [23] and PoPENDA and WERBOWSKI [24], and since the completion of this manuscript the atten-
tion of the authors has been brought to a paper by BEEsack [4].

The purpose of this paper is to derive generalized discrete (ironwall inequalities in a form which may be
directly applied by numerical analysts when proving convergence of product integration methods for weakly
singular Volterra integral and integro-differential equations. It is anticipated that in a numerical scheme as the
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stepsize h is decreased to zero the discretization will in some sense tend to the underlying integral equation. It
therefore seems natural to expect that any analysis for the integral equation will have a parallel in the discrete
problem. Following this view a continuous generalization of Gronwall’s inequality is first presented and then dis-
crete manipulative steps, analogous to those employed to derive the continuous inequality, are used to obtain the
main result of this paper, a generalized discrete Gronwall inequality.

Illustrative examples of the application of these generalized Gronwall inequalities are given ; further examples
of the use of these inequalities in deriving convergence results for Volterra type equations may be found in BRUNNER
[5], CamERON and McKEE [8], DixoN and McK e [9], Tk RigLE [25] and Scort [26]).

2, A linear generalization of Gronwall’s inequality

The following standard result from functional analysis will be required.

Lemma 2.1: Let X be a Banach space with norm ||-])x, and let 1(X) denote the Banach space of linear operators from X into
itaelf. o
If K € L(X) 1s such that ||K"|| << 1 for some r € N then 3 K™ converges and is the inverse of (I — K).
n=0
The above lemma may be used to obtain the following elementary existence result for linear second kind Volterra integral
equations.
Theorem 2.1: Foreacht € Q2 := [0, T'] let the Volterra kernel k(t, s) be integrable over (0, t) as a function of s. Suppose that for
some p € N the uth iterated kernel k'\F)(t, s) is continuous on D := {(t,8): 0 < s <t < T).
Then for each y € C() the integral equation

y=vy+ Ky, @

2.1)
¢
where (Ky)(t) = [ k(¢, 8) y(s) ds, ¢ € 2, has a unique solution y € C(2) given by
0
oc
y= 20 K"y (2.2)
n=
Equivalently
o0
y= X y" (2.3)
n=1

where the sequence {y™ }52.; 15 defined by y! = p, y" = K", n = 2.
Furthermore, there exists a constant C, independent of v, such that
lylleo = Cliwlleo . (2.4)
Note that the series at (2.2) is the resolvent series and that at (2.3) is the Neumann series.

The theorem is proved by showing that || K'|| < 1 for all r sufficiently large and then employing lemma 2.1.
Lemma 2.2: Let the Volterra kernel k(t, 8) satisfy

(CI) k(t, 8) is non-negative;
(CII) k(t, 8) is integrable over (0, t) as a function of s for each t € Q;
(CIIT) there exists j1 € N such that the pth iterated kernel k¥(t, 8) is continuous in t, s.
Define F ¢ L{C(2)) by
Fy =y — Ky (2.5)

¢
where (Ky)(t) = [ k(t, 8) y(s) ds, t € L. Then Fy = 0 implies y = 0.
o

The proof follows that of theorem 5 of BEEsack [2].

The following linear generalization of Gronwall’s inequality is a direct consequence of lemma 2.2.

Theorem 2.2: Let the Volterra kernel k(t, s) satisfy C1—CILL, For any y € C(Q) if x € C(82) satisfies the integral inequality
r=vy+ Kr

(2.6)
¢
where (Kx) (t) = [ k(t, 8) x(8) ds, ¢ € £, then
[}
r=y (2.7)
where y is the unique C(2) solution of the inlegral equation
y=v+Ky. (2.8)
Furthermore, if x = 0 and y = 0, there exists C, independent of y, such that
[lzlloo < Cliwlleo . 2.9)

The bound (2.7) is the best possible result since equality in (2.8) implies equality in (2.7). For the case # = 1 the inequality
(2.7) was first given by Cau and METCALF [8].

The results stated in this section are essentially well-known ([2], {8], [15], [16], [27], [28]). They have been included‘sir}ce it is
felt that a numerical analyst may not be particularly familiar with them and, more importantly, to emphasise the strong similarities
between the continuous results given here and the analogous discrete results which will be derived in section 4.

3. A weakly singular integro-differential equation arising from the diftusion of discrete particles
in a turbulent fluid

Consider the weakly singular integro-differential equation
[

ym=mwwuf
(1]

y'(8) 3.1
(t—a)“ds+q(t)' te Q, 3.1)
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with y(0) given, ¢ a constant and 0 < « < 1. It is assumed that f(¢, y) and ¢(f) are continuous on X R and Q
respectively, and that f(¢, y) is (uniformly) Lipschitz continuous in y. When & =  (3.1) maodels the motion of
a particle in a turbulent fluid; further details are given in McKEE [21].
. Equation (3.1) will be used to illustrate the results of the previous section, and in section 6 convergence of a
numerical method for solving (3.1) will be proved using a discrete analogue of theorem 2.2.
Integrating (3.1) over (0, ), interchanging the order of integration and integrating by parts yields
[3

1--a .
yo = (1= Yo f o) dx 4 f (160 o - 2 Y. (.2)
0 1]

I %(0) is subject to a perturbation then the change in solution x(t) = |8y(t)] will satisfy an integral inequality of the
form !

, P A
x(t) < p(t) | Mf(l e ds, te 9.

0

Investigating the effect of the perturbation on the solution motivates the following result.
Theorem 3.1: Let x(t) be continnous and non-negative on [0, T. If

a(l) < plt) + Mf '"’s)a 0<t<T, (3.3)

where 0 £ x <1, (i) is a non-negative, monotonic increasing continuous function on [0, T} and M is a positive con-
stant, then

z(t) S p() E1 (M1 — ) £179), ost<rT, (3.4)
where Ky 4(z) 18 the Mitlag-Leffler function defined for all x < 1 by

[+ o] zﬂ
Ei «z):= B T T
- o?) ,é‘ol(n(l — ) 4 1)
The Mittag-Leffler function, which is a generalization of the exponential function to which it reduces when
o = 0, has been discussed in the literature and references may be found in Erp&Ly1 [10] (see also FRIEDMAN [11]
and KersHaw [18]).
This result follows by showing that the solution of the related integral equation

y) = ost<T, (3.5)

satisfies
ylty =p) By . (MTQ — )" 2),

and invoking theorem 2.2 with 4 = p + 1 where g € I is chosen such that (o — 1)jo <& =< /(¢ + 1).
Ifyt) =9, 0=t = T, (3.4) is the best possible result. For a more general function (¢} (which is not necessa-
rily monotonic) the best possible result is given by

t

x(l) = ]t ps) By oMY — )t — )" ")ds, 01T, (3.6)

0
where the right hand side of the inequality (3.6) is the exact solution of the integral equation (3.5).

4. A discrete existence result

Discrete manipulative steps, analogous to those used in the continuous problem, are employed to derive a discrete
version of theorem 2.1 and, in the next section, of theorem 2.2,

A discrete version of the space C(£2) is required. Let k,, T be given with 0 <{ h0 < T and T/h, = N,, a positive
integer. DefineJ := {h:h = TIN,Ne N, N = N,} and for h ¢ J set 2* = {0, 1, N}. Define the discrete space

=P = W s W) T, ER, 0T Ny
with the maximum norm
[19*]|oo = max |y .
0<i<N

The idea of discrete Volterra kernels and discrete iterated kernels will be required (cf. Dixon and McKEE [9] and
ScorT [26]).
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Definition 4.1: Let the discrete function k;; defined on the integers 7, j, 0 £ ¢, § < N, satisfy k;; = O for
j = 1. The discrete iterated kernels k"’;’, n = 1,2, ..., of the discrete Volterra kernel %;; are defined to he
i—1

KD = &, K=k 3 kakp-v,  nz 2

1])
(Here and elsewhere it is assumed that 3’ D, = O and J] D; = 1 if @ is the empty set; thus A{#, = 0 is assumed for
= 2.) je® je@

A discrete version of theorem 2.1 is now presented.

Theorem 4.1: Let k;j be a discrete Volterra kernel and for each i ¢ Q* let h Z‘ ki; be bounded independently of h.

Suppose that for some y € N the ,uth discrete iterated kernel k) is bounded in 1, j, mdepcndemlJ of h.
Then jm‘ each h € J and y* € C(Q*) the discrete opemmr equation
= y) + KM 4.1)

where (K*y"); = h Z ki, 1€ Q% has a unique solution y* € C{(L*) given by
i

Y= 3 (RN (4.2)
n==0
Equivalently
¥ =3 hH", (4.3)
n=1

where the sequence {(Y")"} w1 18 defined by (p")? = y*; (Y")" = K*yh)» !, n = 2.
Furthermore, there exists a constant C, independent of Y* and h, such that

1Moo = Clig*loo - (4.4)
The scries at {4.2) is the analogue of the resolvent series while that at (4.3) is the analogue of the Neumann
series.
Proof: By repeated substitutions for * in the right hand side of (4.1) it is straightforward to show that
yh =gt ]?h h
where p* = Z (K") y" e C(Q% and (K" by = h 2 k(,’,')_/), ie Forn=1

n=on

=)

where ||Lh(“)]|m 1= max |lc(")| < M, with M independent of k. This is trivially true for n = 1;assume inductively that it is true for
some n = 1. %]
It can be demonstrated that for any integers p, ¢

o < ey, BE— 1 =D l

L(P-H]) —_ h 2 k(p)L(")
T
Therefore

i—1 i i-1
RO = a5 0Ok < max (B 1RO 2 i—l—1nmt
o ) = 1 KL < max BN e B )
serve that
i-1 i-1 141 c iy
Z i—1—1ts fi—s® tda= 7 bt
1=j+r <7411
and thus

0 | < gy 4 (h(i —j — )"
n!

which completes the induction.
~ i—1
Since ((KM® yh); = & Z lc(f-‘“)yy i€ £k, it follows that

n17.H(1) h
(Kb ")|<" e Dlo llylleo “52 5 gy,
T 5

Bounding the summation by the integral f (¢ — 8)"®=1 ds and using ih < Nk < T then gives
0
ih h . ™

HORRH = ([(RMRe] < |RA) %, T

Therefore for r sufficiently large ||(1?")'|| < 1 and applying lemma 2.1 with X = C(Q") yields
®© A ~
yh = X (Kt k. (4.5)
n=0

Substituting for x*, p® yields the discrete resolvent solution

= I (KMnyh
n=~0
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The equivalent discrete Neumann series (4.3) can be derived by using induction to prove that for n = 1
(h" = (K=t yh.
To obtain (4.4), taking norms at (4.5)

g ~ ~ ~
y*ileo = Z (KM 119 Hleo < CillMloo

n
where €, = 2 ('-n!— L = exp (M T) is bounded independently of k. But

~p LA P
oo < Z KM [19"||co
n-==0

i—1
and || K%} is bounded independently of &, since k 3 ky; is bounded independently of A for each i ¢ O* The required result follows.
i=0

Observe that (4.1) is merely a strictly lower triangular system of equations so that (4.2) is equivalent to the
finite sum

N
Y= Z;)(K")" y (4.2)
and (4.3) is equivalent to
N+1
= 21 (ph)" (4.3

since (KM¥+1 = (. This apparently suggests that the above analysis, which showed that under the hypothesis of
the theorem 2‘ (K™ and 3_‘ ( ")* converged, was unnecessary. However discrete Gronwall inequalities are to be

derived to be employed m convergence analysis for numerical schemes; the parameter & will then represent the
steplength and to prove convergence it will be necessary to let A — 0 while N — oo with Nh fixed. It will therefore
he more uqeful when considering convergence to use (4.2) and (4.3) in place of (4.2') and (4.3'), respectively; the

assumptions h Z ki = M and |09 < M’, with M, M’ independent of h, will then ensure that the constant C
in (4.4) is mdependent of h and N.

5. A generalized discrete Gronwall inequality

The following lemma and theorem are analogous to lemma 2.2 and theorem 2.2.
Lemma 5.1: Let the discrete Volterra kernel ki; satisfy

(DI) L,J w non-negative;
(DITy & Z k;; 18 bounded independently of h for each i ¢ Q*;
(DI there exists u € IN such that the uth discrete iterated kernel k(") 18 bounded in i, j, independently

of h.
Define F* ¢ L(('(Q")) by
Fhyh = yp — KM (6.1)

i—-1

where (K*y"); = h ) /n,]l/;, 7€ Q" Then Fhy* = 0 implies y* = 0.

Theorem 5 l Let the discrete Volterra kernel k;; satisfy D1—DIIL For b € J and any 3" € C(2*), if * ¢ C(2")
satisfies the discrete integral inequality

o < b Khah (5.2)

i-1
where (K**); = h 3 kyx;, i€ ", then
i=o

&< (5.3)
where y* is the unique C(£2*) solution of the discrete integral equation

P =y + KM (5.4)
Furthermore, if x* = 0 and y* = 0, there exists C, independent of y* and h, such that

[12*loo = Cllg"]o - (5.5)

The importance of C being independent of k is that when the above result is employed to prove convergence of
some discrete algorithm the bound (5.5) will imply the order of convergence depends only upon the order of the
consistency error .
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6. A discrete Abel’s singularity

In this section the results of section 5 are used to derive a particular discrete Gronwall inequality which may be
employed to prove convergence of product integration methods for solving Volterra integral equations with weakly
singular kernels.

Lemma6.1: Laa 0 a <1,y 1,8 =Y. Thenfr 0 <j<i—1

“’$,1 kB-1 1 Bl —y,1 —u«)

ey @ Ky (BB =y S B @ e

where B(n, b) is the Beta function defined for Re (a) > 0, Re (b) >> 0 by

1
dw
a, by == | —— e,
] (( ) f’l"l-“(l — ",)1 [
0
Proof: The summation is compared with the integral

3
-1
T
(P — &Py (sP — 3By
j
trented as an area under a curve. Let

sfi-1
i) = (,;ﬂ _ 8ﬂ)"‘ (85 _jﬁ)v .

If0 <x <1,y < 0and g == 1, fis the product of three nondecreasing functions, so that

li‘l kb1 1‘2—‘1 l:}-l 313—1 d
< N e ot Ry i V)
R ERN iy o o ( U B iR S e CY Py Lt
and the required bound follows by evaluating the integral using the change of variable o = jﬂ + (6* — Py
Suppose 0 << a << 1, y>> 0 and # = 1. The derivative of f vanishes when
L= —ap 4 9B) + (@~ B~ 1) —apff — ") — B —1) = 0.

This is & quadratic in 3. Since f is positively infinite at s = J and s = ¢ the quadratic must have at least one real root in (7, ) and
consequently both roots must be real.

This implies that f'(s) vanishes at at most four real points, of which at most two can lie in the interval (j, 1). It followsa that
there exists only one turning point in (j, 7) and that this point is a minimum. Let the minimum occur at s = s* € (5, {) and let [ be
the largest integer such that ! < s*. Splitting the summation over k = j + 1 to k = i — 1 into two summations

ZI kB i-1 kb1
k=it (@ — Py Py oA @ — 1By (P — jhy

and interpreting the first sum as the forward rectangular rule and the second as the backward rectangular rule, it may be seen that

El g f #h—1 4
S < _——e e e —— (8
R L L T Tl
J
(see fig. 1 where the shading represents the summation).

le—7
(iP-sPyesP_ ;P

NN
MW

| s® i

AR

- Fig. 1

S

Theorem 6.1: Let 2;, 0 < ¢ £ N, be a sequence of non-negative real numbers satisfying

-,

mSy b Mivey T 0<igN, (6.1)
j=o(t — )"

where 0 <« <1, M > 0 is bounded independently of h, and y,, 0 < 1 £ N, is a monolonic increasing sequence of
non-negative real numbers. Then

2 Syl _(MI(1 — &) (Gh)-2), O<i<N. (6.2)
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Proof: For0 i< N
jt+1

i--1
s hl o . \J‘Ihl I3
hzk MR Z o J)“, Ef(,_s),.i

j=0

Mo

where Nh < 7', Therefore h E lc is bounded independently of & for each ¢, 0 < i < N,

Let g € N be chosen so that e ; ! Sa g——+— . It can be shown by induction uging lemma 6.1 with § = 1 that the discrete

iterated kernels k() of k;; where k;; = M(h(i — j)) ™ sutisfy

0< i < (ML —a)" K078

Y Il —a) (5 — g™~ )
Hence

k(9+‘) B (J_UI - )e+l pe--leti)x
= e+ —w)
where 31’ is a positive constant bounded independently of A. Thus DI —DIII are satisfied with 4 = g -- 1, and invoking theorem 5.1

2‘t§yi, Oéi’éN’

..._M'

where

\

i—1
yi=vo MR Y Y 0SiSN.
j=0 (i —j)*
From theoremn 4.1

-3 ((w")“) 0=Si< N,

H—

and using induction it is straightforward to demonstrate that for all n = 1

(M1 — )" (R)P D0~

OSENN =R T e )

0<i<AN.
Hence
o< pilly (MU —a) B17%), 0

TSN,

1A
[IA

Note that
[1Z*]oo 2= Cllphfo

whero C = K, (M1} — &) 7" "®) is bounded independently of .

McKxg [22] has also considered inequalities of the form (6.1). The same inequality has been considered here
not only because it shall be employed to prove convergence of product integration methods but also because it
provides a useful example of the more general discrete Gronwall inequality derived in section 5. Morcover the bound
(6.2) is both sharper and more elegant than that derived by McKEx.

Example 6.1: Consider the weakly singular integro-differential equation discussed in section 3, numely
t

YO — gt) -+ [t y0) -+ o ]”ﬁ ds, 0Zt=<T, (6.3)
0

(¢ — 8

where 0 < o << 1.
An Euler-type method combined with the simplest produet integration method yields the following approximating equation

Pyt =0,  ¢hCE@) - M

where
Yo »
(™M) = J¥i — ¥ i1 . (6.4)
ki —_h—"‘_l' - Q(t,) “f(lp ¥) — C'Z wij(-'/j+x - yj) ’ =iz ¥,
where ¢; = ih, 0 < i << N, Nh = T, y; denotes an approximation to y(t:), gy is & given starting value and
Y41
1 ds V<ici<N
wy = - - - < < N.
WEH) e UEISTE
Yy

Summing the equation
i-1
Y, —Y; 1= ’W(tg) -+ hf(tp y.-) - Ch'jzowij(.'/j+1 - yj)

over ¢ == 1 to [ and interchanging the order of summation

dl—a
w=(1- ) w+ b Eat) FhE SO + cthl, 350

which is the discrete analogue of equation (3.2).
The true solution y(¢;) satisfies the perturbed equa.tion
yl&) — ylt;_,)

k —q(t)—f(t.,y(t))—oz‘w,,(y( ) —YE) =Ti, 1ZiS N,
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That is
(t) — yit; ) i ) —
w2 POTYE) iy e B [ (v - L) TV 1,
j=0 h
Y

In general the solution y(t) of (6.3) will have a discontinuous second derivative at the origin, but will possess continuous
derivatives away from the origin (see BRUNNER [5]). It can then be shown that
|T:| < Mh=% + O(h)

for some M independent of h. Details may be found in Scorr [26].
Letting x; = |y(t:) — yil it follows, assuming the starting value is accurate of order 1, that

<1 -2 o HzZlf(t,, ¥(t)) = fit, y)l -+ ch 5w
< Ch-i MR ®

i
g, LA\ <
i=1
i
+ Lh]z‘ x, - jé‘lu'ij ity
for some C, M independent of k.

1t is straightforward to show thut for 1 <j <
—x
0<w < B =)

—x
e 0“*=1.
Therefore

-1 g
i Ch + MBY % 4 Lhey + M 2 k|

i=o (¢ —~J)
where L = L }— uud M = 71' M- + LT is independent of A.
Provided AL < 1,
UL 7
w, S ChA MR M Y

0=1

IIA

. N,
i=e (i —])

where ¢/ = Cf(1 — Lh), M" = M[(1 — Lk), M= M/(l — Eh) are bounded independently on A
Invoking theorem 6.1 with y; == (b -] MK %

0 S (Ch A+ MR E, (M1 —x) 8 %),

DZIEN.
This proves convergence of order at least 1 — a.

Example 6.2: As o further (,xamplt, to illustrate an applicution of theorem 6.1 consider the second kind Volterra integral
equation
¢

G(t, s, yl(s
Y = g0) + f Glt, 5, 9(s))
v

s, 0=Zt=T,
(t —9° -

1f y € CH0, T] then [T¢] = Cih, 1 < 7 << N, and the method is then convergent of order at least 1.

where 0 < o < 1. KErsHaw [ 18] suggests the following scheme

gh(yny =0,  @h :C(Q8) — C(Qhy,
where

— ()
(M) = Jy, — gi(t)) ~ n z w (e

iy, 12iEN, (6.5)
with
’ o=t )
4 ~ ‘?) ] MR S
Wy = ’zf 177 Lds Wi =g / ------ Uy, 1<i=N,
v (ks — 8) (¢ — )
° liy
u ) st
ip1— 8 s —
u,ﬁ:i[ £ “(517';_,- ’;)as, 1<j<ti—1, 2<i<N.
S i —8) L {ti —3)
t j—1
1t can again be shown that for some M, independent of &,
()f_gwing(h(i—j))"", VEj=isnN,
where 0-% = 1.
The true solution y satisties the perturbed equation
t)—g(t)—hzu Gt y(t)) = T 1<i<N.
That is,
1 (4 — o) (s — t)
mo_ 'y ji+1 8 s —{
ro='5 [ [SmR 00 nv0) - 6ty v + S5
]

(G(ti’ 8 y(s)) - G(t‘., tj+1’ y(tj+ 1))] y
Provided Q(¢, s, y) is (uniformly) Lipsachitz continuous in y

[T < Cik® 4 O(R**Y)

— 3)"‘
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where
.- {1 —«, if y has discontinuous derivatives at the origin

“ 12, ifyissmoothonl0, T].
Therefore, z; = |y(ti) — y:| satisfies
i
v, < Lh 3wy + Ch° + Ot
j=o
and for & sufficiently small
i—1
HE LML T 4 O 4 O (BT
j=o (i —J)
where L’, ¢/ are independent of A.
Convergence of order s follows on applying theorem 6.1.

The above convergence analysis of the discretization method (6.5) is more straightforward than that given
by Kkrsuaw [18]. Furthermore, it is clear that the analysis may be extended to general product integration methods.

7. Further gencralization of Gronwall’s inequality

Generalizations of theorcms 3.1 and 6.1 arc given for Volterra integral equations with an Abel’s type singularity
of the form

t
Yt = g(b) -+ %ﬁﬁ‘%ﬁ,’)’)da ot T, (7.1)

0
where 0 <o <1, 8 2 1 and G(¢, s, y) satisfies the Lipschitz condition
Gt s, 41) — G, 8, Y2l < Ls°lyy — gl

for some non-negative constants L, o witho = f — 1.

A practical example of equation (8.1) with § =4 1 is given by LicuriisL [19] and by CuaMBRE and AcRivos [7]
wherca = 3,8 =42 andg = 1.

Theorem 7.1: Let the function z be continuous and non-negative on [0, 7). 1f

t

(1) < plt) + Mf(?;‘%,),) ds, 01T, (1.2)

V]
where 0 <o < L1 <0+ 1,0 =0, M is a pusitive constant and (L) i u continuous, non-negutive monotonic
increusing function on [0, T, then

0o M£o+lfaﬂ n oA
) = pt) 3 ( 3 ——) Bux,p,0), 0=t=T, (7.3)
n=0
1, n =20,
Balx, B, 0) = n l 7.4
o f, ) II (F(a+1_ap)+a,(1—a)), n=1. .4
i=1
In the speciul cuse 0 + 1 — B = 0 (7.3) reduces tv
#(0) < p() Elua(»j!’-f%}:‘i wﬂ—”), o=t<T. (1.5)
Theorem 7.2: Let x;, 0 £ ¢ < N, be u sequence of non-negative real numbers. 1f
< Mhot! ﬁ'§l 17 0<i<N (7.6)
TS Yy hotl=ab 3 SIiEN, 6
B iTo @ — jfy=

where 0 <o < 1,1 <o+ 1,0=0, M tsu positive constunt, und p;, 0 < i = N, is a monotonic increasing
sequence of non-negative reul numbers, then

9] Shyo+1l —a\n
LSy S (M("‘)ﬂ-.—_) Bu(w,B,9), O<i<N. (17)

n=0

Wheno +1 —f§ =0,

ss ki, (M @), osizw. (7.8)
The proofs of theorems 7.1 and 7.2 employ similar arguments to those already presented and so are omitted
(Scort [26]).




544 ZAMM - Z. angew. Math. Mech. 66 (1986) 11

O O

(-3

10

29

References

BrLLman, R., Stability Theory in Ordinary Differential Equations, McGraw-Hill 1963,

Bggsack, . R., Compuarison theorems and integral inequalities for Volterra integral equations, Proc. Amer. Math. Soc. 20
(1969), 61 —66.

BEEsack, P. R., Gronwall Inequalities, Carleton Math. Lecture Notes No. 11, May 1975.

BeEsack, P. R., More generalized discrete Gronwall inequalities. ZAMM 65 (1985) 12, 589 —595.

BRUNNER, H., The approximate solution of Volterra equations with nonsmooth solutions, SIAM J. Numer. Anal., to appear.
CaMERON, R. F.; McKEE, 8., Product integration methods for second-kind Abel equations, J. Comp. Appl. Math. 11 (1984),
1—10.

CuaMBRE, P. L.; Acgrivos, A., On chemical surface reactions in laminar boundary layer flows, J. Appl. Phys. 27 (1956), 1322
to 1328.

CHuy, 8. C.; MeTcaLy, F. T., On Gronwall’s inequality, Proc. Amer, Math. Soc. 18 (1967), 439 —440.

Drxon, J. A.; McKEE, S., A unified approach to convergence analysis of discretization methods for Volterra type equations, IMA
J. Numer. Anal. b (1985), 41—57

ErviLyi, A. (ed.), Higher Transcendential Functions. Vol. 111, MctGraw-Hill 1955,

FriEDMAN, A., On integral equations of Volterra type, J. Analyse Math. 11 (1973), 381 —413.

GroxwaLL, T. H., Note on the derivatives with respect to a parameter of the solutions of a system of ordinary differential equa-
tions, Ann. of Math., Ser. 2, 20 (1919), 292 —296.

Hexricr, P., Discrete Variable Methods in Ordinary Ditferential Equations, John Wiley 1962.

HILLE, E., Lectures on Ordinary Differential Equations, Reading, Mass. 1969.

HiuLg, E., Methods in Classical and Functional Analysis, Reading, Mass. 1972.

Hocustapt, H., Integral Equations, Wiley — Interscience 1972,

HovryHEAD, P. A, W.; McKEE, S.; TAYLOR, P. J., Multistep methods for solving linear Volterra integral equations of the first
kind, SIAM J. Numer. Anal. 12 (1975), 698—711.

KEersHaw, D., Some results for Abel-Volterra integral equations of the second kind. 1n: BaRER, C. T. H.; MiLLER, G. F. (eds.):
Treatment of Integral Equations by Numerical Methods, Academic Press 1982.

Ligurmcr, M. J., Contributions to the theory of heat transfer through a laminar boundary layer, Proe. Roy. Sve. London, Ser. A
202 (1950), 359 —377.

Linz, P., Numerical methods for Volterra integral equations of the first kind, Comput. J. 12 (1969), 393 —397.

McKkeg, 8., The analysis of a variable step, variable coefficient linear multistep method for solving a singular integro-differential
equation arising from the diffusion of discrete particles in a turbulent fluid, J. Inst. Math. Applics. 28 (1979), 373 —388.
McKEE, S., Generalised discrete Gronwall lemmas, ZAMM 62 (1982), 4290 —434.

PAcHPATTE, B., On the discrete generalization of Gronwall’s inequality, J. Indian Math. Soe. 37 (1973), 147 —156.

Porenpa, J.; WERBOWSKI, J., On the discrete analogue of Gronwall’s lemma, Fasciculi Mathematici 11 (1979), 143 —154.
RiELE, H. J. J. Tx., Collocation methods for weakly singular second-kind Volterra integral equations with non-smooth solution
IMA J. Numer. Anal. 2 (1982), 437 —449.

Scorrt, J. A. (née Dixon), A Unified Analysis of Discretization Methods. D. Phil. thesis, University of Oxford 1984.

Tricomt, F. G., Integral Equations, Wiley-Interscience 1957.

Yosuipa, K., Lectures on Differential and Integral Eguations, Wiley — lInterscience 1960,

Wauvrer, W., Differential and Integral Incqualities, Springer-Verlag, Berlin-Heidelberg-New York 1970,

Received August 2, 1984, in revised Torm February 256, 1985

Address: Dr, Jennirer Dixon, National Radiological Protection Board, Chilton, Dideot, OXON, England;

Professor Sean McK Ex, Department of Mathematics, University of Strath clyde, Glasgow, Scotland





