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Repeated Integral Inequalities

JENNIFER DDCON AND SEAN MCKEE

Computing Laboratory, 19 Parks Road, Oxford

[Received 3 February 1983 and in revised form 3 June 1983]

Generalizations of the classical Gronwall inequality when the integral inequality
involves a repeated integral are presented. The corresponding discrete versions are
deduced from the continuous results by employing a further Gronwall inequality.
An application is given.

1. Introduction

IN 1919 GRONWALL proved the following result
LEMMA 1.1 Let the function x be continuous and non-negative on the interval [0, T].
/ /

x{t) 4: a+b I x{s)ds, 0 «$ t < T, (1.1)
Jo

where a, b are non-negative constants, then

xfO âe", 0<t<r. (1.2)

Gronwall inequalities have become a generic term for inequalities of this type
which give explicit bounds for a function which satisfies a Volterra integral
inequality. The applications of such inequalities are numerous in the establishing of
existence and uniqueness of solutions of integral and ordinary differential equations,
and in the perturbation and stability analysis of ordinary differential equations.
Some of these applications appear in Walter (1970), Lakshmikantham & Leela
(1969) and Bellman (1953).

Recurrent inequalities involving sequences of real numbers, which may be
considered to be discrete Gronwall inequalities, have been widely used in the
analysis of finite difference equations. The book by Henrici (1962) provides an
elementary introduction to the application of such results to the numerical solution
of ordinary differential equations. The following lemma, which is encountered
frequently in numerical analysis, may be regarded as the discrete analogue of
Lemma 1.1.

LEMMA 1.2 Let xb i = 0 , 1 , . . . , N be a sequence of non-negative real numbers
satisfying

'^Xj, i = l , 2 , . . . , N , (1.3)
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100 J. DDCON AND S. McKEE

where 5, M are non-negative constants with M bounded independently of h( = T/N),
then

xt < 5 exp (MJTI), / = 0, l,...,N. (1.4)

A reasonably comprehensive account of Gronwall inequalities, which includes a
discussion of both continuous and discrete inequalities, has been given by Beesack
(1975).

The purpose of this note is to present linear generalizations of Lemma 1.1 when
the integral inequality involves a repeated integral, and to derive the corresponding
discrete results from the continuous results.

The principal motivation behind this work is the derivation of discrete Gronwall
inequalities which will facilitate convergence proofs of discretization methods for
integro-differential equations with continuous or weakly singular kernels.

In our analysis we will require the following linear generalization of Gronwall's
inequality due to Chu & Metcalf (1967).

LEMMA 1.3 Let the functions x, <p be continuous on the interval [0, T~\. Let k(t, s) be
continuous and non-negative on the triangle 0 ^ s < t < T. If

x(t) < <f>(t) + P k(t, s)x{s) ds, O^t^T, (1.5)
then

x(t)^yit), 0<t<7, (1.6)
where y is the unique continuous solution of the Volterra integral equation

y(t) = <j>(t) + P k{t, s)y(s) ds, O^t^T. (1.7)
Jo

This result (and all subsequent results) remains valid if x, 4> are bounded and
continuous almost everywhere on [0, T] (the solution y of (1.7) will also be bounded
and continuous almost everywhere). This enables us to include piecewise continuous
functions.

2. Deducing Discrete Results from the Corresponding Continuous Results

We first present a discrete Gronwall inequality which will allow us to deduce
discrete results from the corresponding continuous ones.
THEOREM 2.1 Let xb i = 0 ,1 , . . . , N be a sequence of non-negative real numbers
satisfying

' = ( U N> (21)

where <f>t, i = 0 , 1 , . . . , N is a sequence of non-negative finite real numbers, and
0 < ktJ < M, 0 < ; < i s$ N,for some M bounded independently ofh(= T/N).

If there exists a continuous, non-negative function k(t, s) defined on the triangle
0 < s < t < T such that
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REPEATED INTEGRAL INEQUALITIES 101

for
ih

and

= Nh, jh^s
then

i = 0,l,...,N, (22)

where y is the unique solution of the integral equation

y(i) = <f>(t)+ I k(t, s)y{s) ds, 0 < t < T,
Jo

and <j>{t) is the step function defined on [0, Y\ by

... Ult ih^t<(i+l)h, i = 0 , l , . . . ,
= <

UN, t = Nh=T.
(Here and elsewhere we assume that

£ = 0 and T\ D} = 1£ j

if 6 is the empty set; thus xo^<pois assumed in (2.1).)
Proof. Since <j>h i = 0 , 1 , . . . , N is a sequence of finite real numbers and 0 < ki} K, M
for some constant M,

where
<I> = max <£j.

Applying Lemma 1.2,
x, < O exp (Mih), i = 0 , 1 , . . . , N,

and consequently xh i = 0 , 1 , . . . , N, is bounded.
We may now define a step function x(t) on [0, T] as follows:

x(t)
fx,, ih ̂  t < {i+l)h, i = 0,1, . . . ,N-1

U , t = Nh = T.
For any t 6 [0, T) there exists a unique i, 0 ̂  i ̂  N-1, such that ili s% t < (i+ l)/t.

With this t,
i-i

and

<p(t) + k{t, s)x(s) ds-fr+% k{t, s)x(s) ds+\ k(t, s)x(s) ds
Jo ;=ojj* Ji»

(-1 fU+D* fr
= 0i+Z^- ^ s J ^ + x J k(t,s)ds

( -1

7=0
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102 J. DDCON AND S. McKEE

Similarly, if t = T,
N-l

and

Jo
Therefore, for every t e [0, T]

s)x(s) ds./c(t,
Jo

Invoking Lemma 1.3 (with x, <f> bounded and continuous almost everywhere on

10, T])

where

y(t) = <f>(t)+ k(t, s)y(s) ds, 0 < t < T.
Jo

Letting t = ih we conclude that

xt^ y{ih), i = 0,1,...,7V. (2.2)

3. A Linear Generalization of Gronwall's Inequality

We are interested in integral equations of the form

where a < 1 and m is a natural number. The functions (f>, k are assumed to satisfy
suitable continuity conditions, and k(t, s, y) is assumed Lipschitz continuous with
respect to y.

Integral equations of this form or, more precisely, the corresponding integral
inequalities, may be used to demonstrate uniqueness and boundedness of the
solution of integro-differential equations with an Abel's type singularity

P
Jo

;
o {* —s)

where a < 1 and m > 1. (Here yim)(t) denotes the mth derivative of y with respect
to t.)

LEMMA 3.1 Let the function x be continuous and non-negative on the interval [0, T].

V
C Ctm f " x(s)\ ... 7p±

Jo Jo Jo l*i —
(3.3)

where a < l , m ^ l , M > 0 is constant, and <p(t) is a non-negative, non-decreasing
continuous Junction in t, 0 < t < T, then

x(t) < ^ (0£ , - , . - m ) (Mr( l -a)tl-<«-»>), 0 < t < T, (3.4)
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REPEATED INTEGRAL INEQUALITIES 103

where f^-^z) is the Mittag-Leffler function defined for any P by

and T(a) is the Gamma function defined for Re a > 0 fcy

T(a)= \ w"-1e-wdw.
Jo

The exponential function, which is obtained when /? = 0, is a special case of the
Mittag-Leffler function.

The Mittag-Leffler function has been studied, in some detail in the literature; for
references see Erdelyi (1955, ch. 18).
Proof. For m > 1, by interchanging the order of integration,

Consequently, the inequality (3.3) is equivalent to

x(t)^<t>(t)+ [\t,s)x(s)ds,
Jo

where the kernel k(t, s) given by

a < 1, m > 1, is continuous and non-negative.
Invoking Lemma 1.3,

At) < At),
where y{t) is the solution of the integral equation (1.7) with kernel (3.5).

The (unique) solution of (1.7) is given by

y(t) = (Kt)+ ['j(t,s)<f>(s)ds, O^t^T,
where

is the resolvent kernel of k(t, s) and fc(n)(r, s) (n = 1,2,...) are the iterated kernels of
k(t, s) defined by

kf*(t, s) = I ' k{t, u)fc(»- l\u, s) du, n>2.

Using mathematical induction it can be shown that the iterated kernels satisfy
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104 J. DDCON AND S. McKEE

Hence we obtain

x{t)
o

-a)tl -<"-"))) 0*t*T. (3.4)

Special Case. If a = 0, m = 1 (3.4) reduces to

x(t) ^ <£(t) cosh (Mh).

Note that in the case <f>{t) = <f>, 0 =$ t ^ T, (3.4) is the best possible result since
equality in (3.3) gives equality in (3.4). For a more general (f>(t), the best possible
result is given by

x(0<^- E1-(a-JiMr(l-a)(t-s)1~l'~m't)<p{s)ds, (3.40
dt Jo

where the right-hand side of (3.4') is the solution of the integral equation (1.7) with
kernel (3.5).

We also remark that if a < 0, Lemma 3.1 remains valid if m = 0, that is, if (3.3)
involves a single, rather than repeated, integral and in this case Lemma 3.1 is an
example of Lemma 1.3. If 0 < a < 1 and m — 0 the kernel k(t,s) = M/(t—sf is
weakly singular; Gronwall inequalities where the kernel of the associated integral
equation is weakly singular can be found in Dixon & McKee (1984).

4. A Discrete Gronwall Inequality

In this section we present the discrete analogue of Lemma 3.1.
LEMMA 4.1 Let xh i = 0,l,...,N be a sequence of non-negative real numbers
satisfying

Xi ^4>i, i = 0 , 1 , . . . , m,

f ^ x (4.1)
' -=0 0 C* / )

where a < l , m > l , M > 0 i s bounded independently ofh, and (pj, i = 0 , 1 , . . . , N is a
non-decreasing sequence of non-negative finite real numbers, then

xt < 4,lEl-(a-B)(Mr(l -aX'*)1 -{'~m)l i = 0 , 1 , . . . , N. (4.2)

Proof We first proceed by mathematical induction to show that for m > 1

n i — a) ' - i

1 ( 1 —

Consider the case m = 1. Interchanging the order of summation

1-1 l i - l
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REPEATED INTEGRAL INEQUALITIES 105

We bound the inner summation on the right-hand side by an integral as follows:

Therefore, since x; ^ 0, 0 < i < N,

i-i d-i x .

and (4.3) holds when m = 1.
Using similar arguments it can also be shown that if (4.3) is assumed to hold for

m = n, then it also holds for n + 1, and hence the induction is complete.
Consequently (4.1) implies

°° '
This is of the form

i-l

where
n , Mr(l-o)T™"«

where M is bounded independently of h. Furthermore,

for

and

for
t = Nh, jh^s< (j+ l)K 0 < ; < N.

Applying Theorem 2.1 and employing Lemma 3.1 yields the required result.
Special Case. If a = 0, m = 1 (4.2) reduces to

x, < <f>i cosh (Af *(i/i)).

We again remark that Lemma 4.1 remains valid for m = 0 if a < 0. For the case
m = 0 and 0 < a < 1 we again refer to Dixon & McKee.

5. An Application

Consider the integro-differential equation

i given, O^t^T, (5.1)
where

-, 0 < a < l . (5.2)
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106 J. DDCON AND S. McKEE

In the subsequent discussion it will be assumed that F, k are sufficiently smooth to
guarantee the existence of a unique solution y which has a bounded second
derivative.

We note that recently Brunner (1982) has studied collocation methods for solving
Equation (5.1) where F(t, y, [//) is linear.

Applying an /-step linear multistep method to the differential part of (5.1) gives

where yt denotes an approximation to y{t^, tt = ih, 0 ^ i < N, Nh = T, and z{

denotes an approximation to ^(r,).
To illustrate an application of Lemma 4.1 a simple product integration method is

used to approximate ^/{Q,
i - l

where
i ds

and Euler's method is chosen as the linear multistep method (5.3).
This permits us to define the discrete algorithm

where

1-2

It is assumed that the required starting values y0, yx are accurate of order one.
We observe that since i—j^l,

£ U ̂  W (5>6)
Using the bound (5.6) it can be shown that the discretization (5.5) is consistent of

order at least one, that is, there exist constants Ct, independent of h, such that

h
where

-i-^-Ffo _!,>>&_,) C,fc, (5.7)

Z
To demonstrate the convergence of the discretization (5.5), we shall consider the

special case
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REPEATED INTEGRAL INEQUALITIES 107

The more general case will follow in a similar manner but notationally it is more
complicated.

The error yit^—yi satisfies

-yd-diti-^-yi-i) = HAh- 0-21-1)+W-
Summing over i = 2 to k,

XV-yk = h Y (2(0-2,)+* I »f+j<«i)-yi-
i= l i=2

Using the bound (5.6) and consistency, and assuming that the starting values are
accurate of order one, and that k{t, s, y) is Lipschitz continuous with respect to y
with Lipschitz constant L,.xt = \y{t^—yt\ satisfies

x0 < Ch
r L 2 - a £ - 1 Jk— 1 x

for some constant C.
Convergence of order at least one now follows by applying Lemma 4.1.

Both authors are funded by the Science and Engineering Research Council and are
grateful for their financial support.
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