A class of noise-tolerant algorithms

Serge Gratton with S. Jerad and Ph.L. Toint

University of Toulouse - IRIT - ANITI
serge.gratton@toulouse-inp.fr

Bath-RAL Day, April 2023

Université
Fédérale

Toulouse
Midi-Pyrénées




Context
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The problem (again)

We consider the unconstrained nonlinear programming problem:
minimize F(x)
for x € R" and F : R" - R smooth, with Lipschitz continuous (exact)
gradient G(x) = VF(x).
In the Big Data Era we often encounter
minimize f(x) = % Zjl\il {(aj, yj; x) (sample mean)

In ML, e.g.,

0(aj,yx) = (a; x ~ ;)% or U(aj,yj; x) = log(1+ e Xﬁb))

and sampling can be very aggressive
For now, focus on the

‘ unconstrained case
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The problem (again)

We consider algorithms for noisy problems
@ that use derivatives for the step computation
@ do not rely on function evaluations for the step size control

with Lipschitz continuous (exact) gradient G(x) = VF(x).

Hence, we consider now

gradient based methods for noisy problems
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Context
Stepsize adaptivity

The Lipschitz constant L in the step-

size 1/L

@ is very hard to compute. Often

trial and error.

@ is too global to be locally

ftx)

Small L Medium L

efficient
Adaptively tune the step size: trust-region idea
Compute
_ True decrease
P= First order decrease
P ‘ action
convergent algorithm C
> increase =— complexity in O(¢2) €
€]m, 2] keep « d =-Vf(x) and f(x) both needed G
<M decrease «
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Context
Drama: effect of noise

In ML, severe sampling in the data results in noise in f and in Vf.
Convergence typically provable provided

accuracy(f) ~ accuracy(Vf)?

(i.e. high sensitivity to noise in f)

— 1)
- ¢
Sa

= very inconvenient when inexactness results from sampling!

Can one dispense with evaluating using f altogether???

Objective-Function Free Optimization (OFFO)
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Context

Objective Function Free Optimization

@ Minimization algorithms when objective function and gradient are
noisy have motivated many papers over the years

@ In the convergence theory, the noise in the function has to be smaller
than that on the gradient. See literature on TR, and regularization
algorithms

© Stochastic methods have been developped in Machine Learning such
as Adagrad (adaptative gradient algorithm) for finite sum
minimization

© Convergence theory exists in, e.g., [Défossez, Bottou, Bach,
Usunier'2020], with complexity in expected square norm of the
gradient: O(N"2) In(N)

© See recent work, e.g., by G. Grapiglia, and F. Curtis, D. Robinson and
co-authors.

O In what follows, gx = g(xk) is a stochastic gradient of F at xj
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A first order method

Outline for section 2

© A first order method
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A first order method
The algorithm

Algorithm 2.1: The ASGRAD framework

Step 0: Initialization. Define xp, k =0, and oy € (0,1].
Step 1: Step computation. Evaluate g, and set

&i.k
Sk = vks,l; and s,-l:k = -2

for a stepsize i € [Yiow, 1] and positive scaling factors w; .
[ADAGRAD Vik = Vik-1+ (V,‘f(Xk))z and Wi Kk = m ]
Step 2: New iterate. Define
Xk+1 = Xk + Sk,

increment k by one and return to Step 1.
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A first order method
One may then wonder. ..

Is it possible improve the complexity bound of [Défossez et al. |?77

Is is possible to derive OFFO variants that do better than ADAGRAD
complexity wise 777

How about the numerical performance of such variants 777
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A first order method
A stochastic process

@ The source of randomness is the approximate gradient g

@ It generates a stochastic process

{Xkagk7/7kasl€75k}

@ E[-] will stand for the conditional expectation knowing
{g07 s 7gk71}

Assumption 1 :

We have that, for all k>0, Ex[gk] = G(x«)-

Moreover, there exists a constant kg > 1 such that ||gk[ e < kg for
all k>0

The scaling factors w;  are left unspecified:
ASGRAD is an algorithmic framework
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A first order method
Some assumptions on w; g

© There exist a constant ¢; >0 and a random variable v; x such
that v; x > ¢; and w; , = (v; x)* for some p € (0,1)

@ A variance condition,

Ei[vik] = vikl < 5o (Ex[g7c] + &%)

@ In addition, g?, < v;«

ADGRAD is covered with =1 and v; = s + ¥ 87

. def
o Vik 2 MiNjef1,....n} Si = Smin
@ Eilg?] <Exfvik]
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A first order method
A decrease lemma

Generalizing a technique from [Défossez et al. 20, Ward 19 ], we derive a
parametric bound on the decrease obtained with step si

Let G; be the true gradient of F at x;. Then, there exists ko > 0
such that, for all i e {1,...,n},

leOWGZ
G st ]<—(1- “)— 26K
[ ) ,J] 2 (E [Vl,j]) A Wi,j

Remember w; ;. = (v; x)".

This shows that st provides a descent direction on the true F as long as
the square of the true gradient’s norm remains large compared with the
stepsizes.
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A first order method

Convergence of ASGRAD (1)

It is clear from

k 122
2
Wik = (C + Z gi,e)

£=0
that w; , > ¢/,

. . def
Moreover, if we define v; =+ Zéf:o g,?e, then
N 1) dvi,> 2
Wik = Vi,k and Vvj j 2 g/,k

and

Bi[Vik] = vikl = [Ex[&7x] - &7l < Ex[87k] + &7«

Thus the proposed scaling factors verify our Assumptions with «, = 1.
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A first order method

Convergence of ASGRAD (1)

Starting from the Taylor bound
n
L
Ej[F(xe1)] < F(x) + Z;EJ[WGUSILJ] + SB[l 17],
and using the descent direction Lemma, we obtain that

G:l? L
1G;l +(§+2M)E[”5Luz].

EJ[F(XJH)] <F(x)-(1- g)’)’lowm

By summing up and taking full expectation,

E[F(xi1)] < F(xo) - (1- & )%20 [161[?]

+ (é + 2HA) Zn: iE[@b)z] '

i=1j=0
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A first order method

Convergence of ASGRAD (l1)

Within our assumptions, consider : w; j = (g + Zf,o g,?e)u

The second order terms can be expanded as

2
Z< PR g1

j= 0( +ZJ Og,’_/)2u

One has the technical result on non-negative sequences

Set by = ij 09)-

Q Ifa+l, Z 0 (§+b & < (1}a)((§+bk)1_°‘—gl“").
Q If a=1, T}y 2 <log ().

S
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A first order method

Convergence of ASGRAD (l11)

K 7
For w; x = (g + 20 g,-%e) we get

o W) (1e (0,1)),
ELaverage ||GJ||]£ (@) —W) (k=1%),
o (k+1)5
o m)(# (3,1)).

© This proves the convergence of the algorithm for p € (0,1)
© Recover complexity obtained for the standard Adagrad algorithm

'ANELT P &S
Bath-RAL 2023 17 / 38
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A first order method

Convergence of ASGRAD (l11)

For w; = (g + Zéf:o g,.zg)#, suppose the variance condition

Var [gik] = Ex[87k = G| < 5 G

holds. Then there exists jy, implicitly defined, such that

1
E| average |G; ]= o\ ———————
Le{je+1,..,,k} 22 ((k+1)%<1-u>)

@ The index jy depends on the particular realization considered
@ Better bound than the existing ones for Adagrad (no log term)

@ For small y this result is close to bounds obtained by standard
algorithms that do evaluate F (TR, LS)
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A first order method
Divergent weights

Let v € (0,1) and p € [v, max(1, 1/)) pik and &, be uniformy bounded
random variables. Take p; x(k + 1)” <wjk <& k(k+1)*, with ¢ < pj , and
5;7;( < Keg for some constants 0 < ¢ < Ke.

Then, for any 6 € (0, 71‘“”))

1
E| average |G; ]=(’) — .
Le{ +1,...,k} ” J” ((k + 1)%(1_“))

1

 def L/{Z’(l + Kyar) h=3u

Jo = 1.2 +1.
2k (710\1\1 - 95}5)

This hold with

This results are identical to the Adagrad family, with now an
for jy.
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A first order method
Numerical experiments: weights

Take fix learning rates 7 =5e — 5 or be — 4.
The following strategies satisfy our assumptions:
© the p—strategy:

k ©
2
Wik = (C + Z gi,e) )
£=0
@ the maxgi strategy:

&k = max(s, Ek-1, |gk]) and w; x = &k (k +1),
© the avrgi strategy:

1 k
.= — E : k+1)".
Wi k max(c, K+ 1j:0|g/,k|)( + )

Remember p; (k + 1) < wj, <& k(k + 1) for the maxgi and avrgi
strategies.

\We use /€ {0.1,0.5,0.9}, »=0.1 and < = 0.01. \

Serge Gratton (Univ. of Toulouse, France) Bath-RAL 2023 20



A first order method

Numerical experiments: data bases, architectures, software

@ Two network architectures: cifar-nv convolutional network of
[Gitman, Ginsburg'17] and a small resnet18 model [He et al."15]

@ Four standard datasets of 32 x 32 images: CIFAR10 and CIFAR100(1),
SVHN(®) and FMNIST [Xiao et al.’17]

o We used haiku [Henn et al.’20] and optax [Hess et al.'20], two JAX
[Brad et al."18] based libraries

@ A workstation with four GTX 1080T]|

Whttps: / /www.cs.toronto.edu/ ~kriz/cifar.html
@http://ufldl.stanford.edu/housenumbers
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A first order method

CIFAR1OQ - cifar-nv
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A first order method

CIFAR1O - resnet18
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A first order method

CIFAR100 - cifar-nv

10— avgi 10— avgi
maxgi
0g — muoil 08
— mu0.9
g 06 g 06
s ]
Soa £oa
A NS
v Ll
02 MV 0.2
AN !
AN LA AN
00 - 00
0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000
step step
1.0 10
— avrgi — avrgi
maxgi maxgi
08 — muo.l 08 — muo.l
muo.s muo.s
— muos — muo.9
g 06 y 06
] S
204 2oa
02 i MV 02
A WY
= Al
Iy 00
0 20000 40000 60000 80000 100000

step step

'ANEL T P &8
Bath-RAL 2023 24 /’ 38

Serge Gratton (Univ. of Toulouse, France)



A first order method

CIFAR100 - resnet18
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A first order method

SVSH - cifar-nv
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A first order method

SVSH - resnet18
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A first order method

FMNIST - resnet18
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Some extensions

Outline for section 3
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Some extensions
Second order models

We allow the use of second-order information by defining a quadratic
model
ngs + %STB;(S

where By can of course be chosen as the true second-derivative matrix of
f at xix or an approximation. Choosing By = 0 results in a purely first-order
algorithm.

For given ¢ € (0,1], ¥ € (0,1] and € (0,1), define, for all ie{1,...,n}
and for all k>0,

k 1
Wik € [\/5 Vi k, v,-7k] where v; def (C + nge) . (3.1)
/=0

Clearly, the Adagrad scaling factors are recovered by ;1 =1, and B, =0is
the (deterministic) Adagrad method.
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Some extensions
The algorithm

Algorithm 3.1: ASTR1

Step 0: Initialization. xp, kg > 1 and 7 € (0,1] given. Let k = 0.
Step 1: Define the TR. Compute g = g(xx) and define A, = %
Step 2: Hessian approximation. Select a symmetric Hessian
approximation By such that || B < k5.
Step 3: GCP. Compute a step si such that |s; x| < A, and
gl sk+1s] Besp < (ngsf + %(st)TBkslf‘)) , where

Sl%k = _Sgn(gi,k)Ai,ka S,? = ’yks,f, with

min 1,% if (si)” Bksf >0,
Yk = (Sk) Bksk
otherwise.

Step 4: New iterate. Xxy41 = Xk + Sk

Serge Gratton (Univ. of Toulouse, France) Bath-RAL 2023 31



Some extensions

The algorithm

For ASTR1 algorithm we have for all p € (0,1)

Ro

min i £ —
J€{0,....k} ”gj ” Vk+1

@ No assumption on the gradient boundedness
@ This complexity bound can be reached
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Some extensions

Some results on small OPM

03/ Imadagidb | -|
h adagit
maxgio1
sdba
biadagil ||
Eadagi
adag!
o1k — — —adag2 i
— — —maxg01
— — —adagi2

02

40 45 50
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Some extensions
Regularization method

o Compute H = V2f(xx) and consider

f(x+s)~m(s)=f(x)+avf(x)'s+1is"Hs+1lo|s|®
@ Approximately minimize m to get s such that

VF(x)"s+1s"Hs+ lo|s|* <0 and |g+ Hs| < o]s]?

o Take oy essentially equal to [T;x(1 + |s;]|%)

Suppose that f has a Lipschitz continuous Hessian. Our algorithm

requires at most o (6_3/2)

iterations to produce an iterate with |gx| < e.
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Some extensions

Some numerics with OFFAR2: the framework

Does this work in practice?

Some numerical experiments with
@ AR2 (the standard adaptive regularization method using second-order
models) and an instance of OFFAR2

@ a set of 117 small-dimensional CUTEst problems
(as available in Matlab in the OPM collection)

@ increasing levels of relative Gaussian noise (both in function values
and derivatives): 0%, 5%, 15%, 25%, 50%

e search for an approximate first-order point (e = 107°)
Reporting:
@ a performance measure: T,14, (See paper for details)

@ a reliability ratio: paigo

Bath-RAL 2023
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Some extensions
Enhanced robustness of ¢-3/2 smethods

Talgo Palgo
with f| 0.99 | 97.48
OFFO | 0.83 | 88.24

| No obvious reason to use new method in the absence of noise. ..

Paigo 5% | 15% | 25% | 50%
with f | 40.67 | 30.84 | 24.54 | 6.81
OFFO | 85.97 | 80.67 | 72.69 | 47.98

... but the picture is very different when noise is present (e.g. in ML)! ‘

Serge Gratton (Univ. of Toulouse, France)
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Some extensions
Conclusions and perspectives

Summary:

@ The methods maxgi and avrgi seem to produce relatively good
results. They often outperform the Adagrad-like variants

@ The relative behaviour of all variants is not significantly affected by
the network architectures. Same for learning rate

@ Among Adagrad-like variants of the first class, those with a larger i
handle smaller learning rates better

@ Still some gaps between theory and experiments to be filled-in

Perspectives:

@ Deterministic and stochastic OFFO methods of higher degree
(cubic?) for a better complexity and better performance 77

@ The usual: constraints, infinite dimension, multilevel

@ More numerical results

‘ Thank you for your attention!

'ANEL T P &8
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Some extensions
Reference on OFFO

@ S. Gratton, S. Jerad, Ph. L. Toint,
Convergence properties of an Objective-Function-Free Optimization
regularization algorithm including an O(e~3/?) SIOPT , 2022
hal-03718813

e S. Gratton, S. Jerad, Ph. L. Toint,
First-Order Objective-Function-Free Optimization Algorithms and
Their Complexity, 2022
hal-03718811

@ S. Gratton, S. Jerad, Ph. L. Toint,
Parametric complexity analysis for a class of first-order Adagrad-like
algorithms, 2022
hal-03718810

Serge Gratton (Univ. of Toulouse, France) Bath-RAL 2023



	Context
	A first order method
	Some extensions

