
Developing Improved Optimization Algorithms 
for Ptychographic Image Reconstruction

Jaroslav Fowkes

STFC Computational Mathematics Group


Visiting Research Fellow at Oxford University



STFC Rutherford Appleton Laboratory

STFC manages the UK’s major science facilities, at the Harwell campus we have:

• Central Laser Facility


• RAL Space

• Diamond Light Source


• ISIS Neutron Source



Coherent Diffractive Imaging

“CDI is a ‘lensless’ technique that allows imaging of matter at a spatial resolution 
not limited by lens aberrations. This technique exploits the measured diffraction 
pattern of a coherent beam scattered by an object to retrieve spatial information”



Ptychography

Probe

Object

Diffraction 
Intensities

“Ptychography is an imaging technique in which a localized illumination scans 
overlapping regions of an object and generates a set of diffraction intensities 
used to computationally reconstruct its complex-valued transmission function”



Exit Wave

o ∈ ℂm⋅m

p ∈ ℂn⋅n oj ∈ ℂn⋅n

Exit Wave:

ej = oj p

by product we mean elementwise multiplication



Wave Model

o ∈ ℂm⋅m

p ∈ ℂn⋅n oj ∈ ℂn⋅n

Wave Model:

wj = F( oj p )

where F is the Discrete Fourier Transform (in 2D)



Forward Model

o ∈ ℂm⋅m

p ∈ ℂn⋅n oj ∈ ℂn⋅n ij ∈ ℝn⋅n

Forward Model:

|wj|2 = |F( oj p )|2 ≈ ij

where F is the Discrete Fourier Transform (in 2D)



Reconstruction

min
oj p ∑

j

|F(oj p)|2 − ij
2

Reconstruct object (and probe) from measured intensities: 

The choice of error nom here is key (e.g. l2, likelihood, etc).



Inverse Problem

min
oj p ∑

j

|F(oj p)|2 − ij
2

Reconstruct object (and probe) from measured intensities: 

a sum of nonlinear least-squares problems in         .ℂn⋅n



Inverse Problem

Unfortunately the inverse problem is not very well-posed, issues include:


• constant amplitude scaling: 


• constant phase offset:


• global probe and object translation


• linear phase ramp (i.e. DFT shift theorem)


However most of these issues can be addressed with suitable constraints.

oj p = (Aoj) (A−1p)

oj p = (eiϕoj) (e−iϕp)



Nonlinear least-squares

min
oj p ∑

j

|F(oj p)|2 − ij
2

Reconstruct object (and probe) from measured intensities: 

a sum of nonlinear least-squares problems in         .ℂn⋅n



Nonlinear least-squares

min
oj p ∑

j

|F(oj p)|2 − ij
2

Reconstruct object (and probe) from measured intensities: 

a sum of nonlinear least-squares problems in         .ℂn⋅n



Nonlinear least-squares
Given a nonlinear least-squares problem 


with nonlinear residual                     , the gradient is given by


                                                       

where                           is the Jacobian matrix, and the Hessian is given by


However, often in practice the Hessian is too expensive to compute.

f(x) = ∥r(x)∥2

r : ℝn → ℝm

∇f(x) = 2J(x)Tr(x)

J(x) = [∂ri/∂xj]ij

∇2f(x) = 2J(x)TJ(x) + 2∑
i

ri(x)∇2ri(x)



Gauss-Newton approximation
The first order optimality conditions for unconstrained optimization are:                             


applying Newton’s method to this equation gives the step     from      as


The idea behind Gauss-Newton is to use the approximation


                                                            


In particular this is asymptotically exact for zero residual problems. 

∇f(x) = 0

∇2f(xk) sk = − ∇f(xk)

∇2f(xk) ≈ 2JT(xk)J(xk) + 2∑
i

ri(xk)∇2ri(xk)

sk xk



L-BFGS Approximation
A BFGS step approximates the Hessian with the matrix      


using past gradients                                       as the rank-2 update


                                                        


L-BFGS only uses a fixed number (limited memory) of past          .

sk+1 = − (Bk+1)−1 ∇f(xk+1)

Bk

Bk+1−1 = (I −
skykT

ykTsk ) Bk−1 (I −
ykskT

ykTsk ) +
skskT

ykTsk

yk = ∇f(xk+1) − ∇f(xk)

sk, yk



Broyden, Fletcher, Goldfarb, Shanno

BFGS



Nonlinear CG
Nonlinear CG is a generalisation of CG to general nonlinear objectives. 


Starting from the steepest descent direction


nonlinear CG proceeds along the approximately conjugate directions


                                                        

Many choices of      are possible here (Fletcher-Reeves, Polak-Ribière, etc).

s0 = − ∇f(x0)

sk+1 = − ∇f(xk+1) + βksk

βk =
∥∇f(xk+1)∥2

∥∇f(xk)∥2

βk



Optimization: least-squares

Notice that the objective is not analytic (due to the modulus): 

hence can only optimize it by identifying                   .ℂ ≅ ℝ × ℝ

min
oj p ∑

j

|F(oj p)|2 − ij
2



Wirtinger Derivatives
Wirtinger derivatives neatly extend complex derivatives to                  , for                        define: ℂ ≅ ℝ × ℝ

∂
∂z

=
1
2 ( ∂

∂x
− i

∂
∂y )

∂
∂z*

=
1
2 ( ∂

∂x
+ i

∂
∂y )

z = x + iy ∈ ℂ

where      denotes complex conjugation. To convert to        -space derivatives we can then use: 

For analytic functions the complex derivative agrees with the first Wirtinger derivative (the second is zero).

∂
∂x

+ i
∂
∂y

= 2 ( ∂
∂z )

*

z* (x, y)



Wirtinger Calculus
For example, for the modulus function:                           And for the product function:


we have that                                                                     we have that


and therefore that                                                             and therefore that


s(z) = |z|2 = x2 + y2

∂s
∂x

= 2x
∂s
∂y

= 2y

∂s
∂z

= x − iy = z*

∂s
∂z*

= x + iy = z

m(z1, z2) = z1z2 = x1x2 + i(x1y2 + x2y1) − y1y2

∂m
∂x1

= x2 + iy2
∂m
∂y1

= ix2 − y2

∂s
∂z1

= x2 + iy2 = z2

∂s
∂z*1

= 0



Nonlinear Least-squares

∇oj
fj = 2JT

oj
rj = 4F−1 (wjrj) p*

∇p fj = 2JT
p rj = 4F−1 (wjrj) o*j

fj(oj, p) = ∥ rj ∥2 = |wj|2 − ij
2

Consider the objective for jth scan position: 

where                     is the wave model. Then: wj = F(ojp)

are the gradients when viewing ℂ ≅ ℝ × ℝ



Gauss-Newton

∇2fj (
voj

vp) ≈ 8
p*F−1 (w2

j F−1(p*voj
)) + p*F−1 (w2

j F−1(o*j vp))
o*j F−1 (w2

j F−1(p*voj
)) + o*j F−1 (w2

j F−1(o*j vp))

Approximates Hessian matrix using only first-order terms: 

where J are Jacobians. Too big to form, consider Hessian-vector products: 

∇2fj ≈ 2
JT

oj
Joj

JT
oj

Jp

JT
p Joj

JT
p Jp

unfortunately these turn out to be extremely ill-conditioned.



L-BFGS
L-BFGS steps use approximate object and probe Hessians


calculated using a two-loop recursion for the BFGS formula:


which is computationally much more efficient.

sk+1
o = − ∑

j

(Bk+1
oj

)−1 ∇oj
f k+1
j

sk+1
p = − ∑

j

(Bk+1
p )−1 ∇p f k+1

j

Bk+1−1 = (I −
skykT

ykTsk ) Bk−1 (I −
ykskT

ykTsk ) +
skskT

ykTsk



Nonlinear CG
Proceed along conjugate directions, starting from steepest descent:


and updating the directions in the standard way (with suitable    ):


s0
o = − ∑

j

∇oj
fj = − ∑

j

4F−1 (wjrj) p*

s0
p = − ∑

j

∇p fj = − ∑
j

4F−1 (wjrj) o*j

sk+1
o = − ∑

j

∇oj
f k+1
j + βksk

o

sk+1
p = − ∑

j

∇p f k+1
j + βksk

p

βk =
∑j∥∇oj

f k+1
j ∥2 + ∥∇p f k+1

j ∥2

∑j∥∇oj
fk
j ∥2 + ∥∇p fk

j ∥2

β



Taking object and probe steps with step-size    :


and substituting into objective for jth scan position gives


Thus to find the optimal step length we can solve


by finding the smallest real root of this real polynomial.

Exact Linesearch

fj(oj(α), p(α)) = |F(oj(α)p(α))|2 − ij
2

= (
4

∑
n=0

cnαn)
2

oj(α) = oj + αso

p(α) = p + αsp

0 = ∑
j

∇α fj(oj(α), p(α)) = ∑
j (

4

∑
n=1

ncnαn−1)
2

α



min
oj p ∑

j

|F(oj p)| − ij
2

ePIE algorithm considers more natural amplitude objective: 

and performs for each j at random a two-stage optimization.

ePIE Algorithm



All ptychography algorithms have to satisfy two constraints      


Firstly, the modulus constraint in Fourier space:  


Secondly, the overlap constraint in real space:


                                                        


which is enforced for all j scan positions.

Fourier and Real Spaces

|F(ej)| = ij

ej = oj p



ePIE Algorithm
First, consider amplitude objective for jth scan position: 

Second, consider the difference between exit waves: 

fj(wj) = |wj| − ij
2

where                     and perform a wave model update: wj = F(ojp)

wk+1
j = wk

j − αj ∇wj
fj

gj(oj, p) = oj p − F−1(wk+1
j )

2

and perform a steepest descent update wrt        . oj, p



ePIE Algorithm
First update is equivalent to the modulus constraint: 

where      is the exit wave        with replaced modulus. 

̂ej = F−1 ( ij exp(iArg[wj]))
̂ej

∇oj
gj = 2 (oj p − ̂ej) p*

∇pgj = 2 (oj p − ̂ej) o*j

Second update takes a step along the gradients of    : 

oj p

with step-sizes                 and                   respectively.1/2|p|2
max 1/2|oj|2

max

gj



Example: ePSIC

JEOL ARM200F
JEOL ARM300F

electron Physical Science Imaging Centre



Example: Graphene Layers

Scan

Positions

Diffraction

Intensity

Detector

Mask

Graphene dataset courtesy of Chris Allen (ePSIC)



Example: ePIE

Object Amplitude Object Phase Probe Amplitude FFT(Probe) Amplitude 

Graphene dataset courtesy of Chris Allen (ePSIC)



Example: Nonlinear CG
Graphene dataset courtesy of Chris Allen (ePSIC)

Object Amplitude Object Phase Probe Amplitude FFT(Probe) Amplitude 



Example: L-BFGS
Graphene dataset courtesy of Chris Allen (ePSIC)

Object Amplitude Object Phase Probe Amplitude FFT(Probe) Amplitude 



Example: Log-Likelihood Error 

Iterations

Lo
g-
Li
ke
lih
oo

d



Thank you! Questions?
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