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STFC Rutherford Appleton Laboratory

STFC manages the UK’s major science facilities, at the Harwell campus we have:

 Diamond Light Source » Central Laser Facility

* |SIS Neutron Source  RAL Space
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Coherent Diffractive Imaging

sample

light source
detector

“CDl is a ‘lensless’ technique that allows imaging of matter at a spatial resolution
not limited by lens aberrations. This technique exploits the measured diffraction
pattern of a coherent beam scattered by an object to retrieve spatial information”
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Ptychography

Diffraction
Intensities

Object

“Ptychography is an imaging technique in which a localized illumination scans
overlapping regions of an object and generates a set of diffraction intensities
used to computationally reconstruct its complex-valued transmission function”
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Exit Wave
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Exit Wave:

by product we mean elementwise multiplication
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Wave Model
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Wave Model:
Wi = F( o; p )

where F is the Discrete Fourier Transform (in 2D)
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Forward Model
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Forward Model:
2 2 s
‘Wj‘ = |F(0jp)‘ ~

where F is the Discrete Fourier Transform (in 2D)
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Reconstruction

Reconstruct object (and probe) from measured intensities:
. ) . 2
mlnz || |[F(o; p)|~—1; ||
0; p ]

The choice of error nom here is key (e.g. I2, likelihood, etc).
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Inverse Problem

Reconstruct object (and probe) from measured intensities:
. ) . 2
mlnz || |[F(o; p)|~—1; ||
0; p ]

a sum of nonlinear least-squares problems in C*" .
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Inverse Problem

Unfortunately the inverse problem is not very well-posed, issues include:
» constant amplitude scaling: o, p = (A0) (A~'p)
» constant phase offset: o, p = (¢'%0)) (e7/p)
e global probe and object translation
e linear phase ramp (i.e. DFT shift theorem)

However most of these issues can be addressed with suitable constraints.
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Nonlinear least-squares

Reconstruct object (and probe) from measured intensities:
. ) . 2
mlnz || |[F(o; p)|~—1; ||
0; p ]

a sum of nonlinear least-squares problems in C*" .
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Nonlinear least-squares

Reconstruct object (and probe) from measured intensities:
. ) . 2
mlnz || |[F(o; p)|~—1; ||
0; p ]

a sum of nonlinear least-squares problems in C*" .
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Nonlinear least-squares

Given a nonlinear least-squares problem
£ = Ir||*
with nonlinear residual r: R" —» R™, the gradient is given by
VHx) = 2J(x) r(x)
where J(x) = [dr;/0x];; Is the Jacobian matrix, and the Hessian Is given by
V2f(x) = 2J(x)7J(x) + 2 ) r(x) V2r(x)
However, often in practice the Hessian is too elxpensive to compute.
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Gauss-Newton approximation

The first order optimality conditions for unconstrained optimization are:
VIix) =0

applying Newton’s method to this equation gives the step s* from x* as
V(") st = — VALY

The idea behind Gauss-Newton is to use the approximation

V2f(xk) & 207 (oK) () +2) iy V)

In particular this is asymptotically exact for zero residual problems.
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L-BFGS Approximation

A BFGS step approximates the Hessian with the matrix B*
Sk+1 — _ (Bk+1)—1 Vf(xk+1)

using past gradients y* = Vf(x**) — VA(x*) as the rank-2 update

T T T
e skyk - yksk | Gk ok
B =\ 1 - B 1 . F—

L-BFGS only uses a fixed number (limited memory) of past s, y* .




Broyden, Fletcher, Goldfarb, Shanno
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Nonlinear CG

Nonlinear CG is a generalisation of CG to general nonlinear objectives.

Starting from the steepest descent direction
s” = — Vf(x")
nonlinear CG proceeds along the approximately conjugate directions

Sk+1 — _ Vf(Xk+1) +ﬂkSk

g = IVAHDIE
VA2

Many choices of * are possible here (Fletcher-Reeves, Polak-Ribiére, etc).
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Optimization: least-squares

Notice that the objective is not analytic (due to the modulus):
. ) . 2
mlnz || |[F(o; p)|~—1; ||
0; p ]

hence can only optimize it by identifying C=2 R X R .
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Wirtinger Derivatives

Wirtinger derivatives neatly extend complex derivativesto C 2 R X R, for z = x+ iy € C define:

Jd 10 0
O_Z_E(ax ldy)
o 1L /fo 0
&_*_E(dx ldy)

where z* denotes complex conjugation. To convert to (x, y)-space derivatives we can then use:

o 0 o\
1 =2 —
ox 0y 07

For analytic functions the complex derivative agrees with the first Wirtinger derivative (the second is zero).
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Wirtinger Calculus

For example, for the modulus function: And for the product function:

$(z) = \Z\z = x* + y2 m(zy, 2p) = 212 = X1 Xy + Ux Y, + %)) — Yi)s
we have that we have that

os ) os , om iy om

— = 2X — = — =X, + 1 — = IXy —

ox ay o SRt ge=mey
and therefore that and therefore that

as . s 4

— =Xx—-1y=7Z — TN TDHh =

62 Y 021

os , 0s
—=Xx+1iy=z — =0
0z* 0z
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Nonlinear Least-squares

Consider the objective for jth scan position:

2
2 2 -
fopp) =l 1= | w2 =i |

where w; = F(o;p) is the wave model. Then:

are the gradients when viewing C R xR



Gauss-Newton

Approximates Hessian matrix using only first-order terms:

i I, J, J,J,
Vifim2|
T T

Iy d, Iy,

where J are Jacobians. Too big to form, consider Hessian-vector products:

o (v0> \ p¥F~1 (szF_l(p*VOj)> + p*F! (wsz_l(aj*vp)>
J

1 (21 ~1 (1,21
OFF (ij (p*vOj)>+0]?‘<F <ij (Oj*vp)>

unfortunately these turn out to be extremely ill-conditioned.
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L-BFGS

L-BFGS steps use approximate object and probe Hessians

k+1 Z(Bk+1) V fk+1

k+1 Z(Bk+1) V fk+1

calculated using a two-loop recursion for the BFGS formula:

T T T
=1 skyk - yhsk | Gk gk
B =11/ - B | = F—
ykT sk yk! sk yk! sk

which is computationally much more efficient.
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Nonlinear CG

Proceed along conjugate directions, starting from steepest descent:
== Z Vo Jj =~ Z4F_1 <Wj’”j>l’*
ZV Ji=- Z4F (W]’”]>
and updating the directions in the standard way (with suitable g ):
k+1 Z \V, fk+1 ﬁk k

k+1 2 \V, fk+1 _I_ﬂk k

k+1112 k+1112
ZJWOJJ; +IV, )

pr =
IV, B2+ 1V, P
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Exact Linesearch

Taking object and probe steps with step-size « :

0]-(05) = 0; + as,

pla) =p +as,

and substituting into objective for jth scan position gives

4 2
flof@,p@) = || IFo@p@)—i | = (Z cna”)

n=0

Thus to find the optimal step length we can solve

A 2
0= Z Vaj;-(oj(a),p(a)) = Z ( Z ncna”_l)
J

J n=1

by finding the smallest real root of this real polynomial.
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ePIE Algorithm

ePIlE algorithm considers more natural amplitude objective:

min » || [F(o; p)| —\/?j

0-p .
/ J

and performs for each j at random a two-stage optimization.
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Fourier and Real Spaces

All ptychography algorithms have to satisfy two constraints

Firstly, the modulus constraint in Fourier space:

F(e))| = \/Z

Secondly, the overlap constraint in real space:

which is enforced for all | scan positions.
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ePIE Algorithm

First, consider amplitude objective for jth scan position:

fion) = || il =/

where w; = F(o;p) and perform a wave model update:

2

k+1 _ ok o, _
Wi =W a]VWj]j

Second, consider the difference between exit waves:
g ||
gj(ojap) = || O; P — F (Wj ) ||

and perform a steepest descent update wrt o;,p.
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ePIE Algorithm

First update is equivalent to the modulus constraint:

é; = -1 <\/l; exp(iArg[wj]))

where ¢; is the exit wave o; p with replaced modulus.

Second update takes a step along the gradients of &;:
VOjgj =2 (ij — éj)l?*

V,8 =2 <0jp — éj) Oj*

with step-sizes 1/2|p|2,, and 1/2|o|;., respectively.

max max
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Example: ePSIC

electron Physical Science Imaging Centre
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Example: Graphene Layers

Graphene dataset courtesy of Chris Allen (ePSIC
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Example: ePIE

Graphene dataset courtesy of Chris Allen (ePSIC)
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Example: Nonlinear CG

Graphene dataset courtesy of Chris Allen (ePSIC)

Object Amplitude Object Phase Probe Amplitude FFT(Probe) Amplitude
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Example: L-BFGS

Graphene dataset courtesy of Chris Allen (ePSIC)

Object Amplitude Object Phase Probe Amplitude FFT(Probe) Amplitude

Science and
Technology
Facilities Council




Example: Log-Likelihood Error
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Thank you! Questions?
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