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Markov Chain Monte Carlo
A fundamental challenge in Bayesian inference is computing integrals
with respect to posterior distributions and Markov Chain Monte Carlo
(MCMC) is widely regarded as the “go-to” approach for these problems.

 

 

 

Langevin diffusion 

𝑑𝑦𝑡 = −∇𝑓ሺ𝑦𝑡ሻ𝑑𝑡 + ξ2𝑑𝑊𝑡  

 

Sample from prior 

Iterations 

Samples from 

(approximate) posterior 
𝜋ሺ𝑥ሻ ∝ 𝑒−𝑓ሺ𝑥ሻ 

 

Under mild conditions on f : Rd → R, the Langevin SDE admits a unique
strong solution that is ergodic with stationary measure π(x) ∝ e−f(x) [1].

Unadjusted Langevin Algorithm (ULA): Yn+1 := Yn −∇f(Yn)h+
√
2Wn
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Convergence of Langevin Monte Carlo

For sufficiently small h, ULA “ends up close” to the target distribution [2].
However, ULA is a Markov chain and might not explore the space quickly.

Broadly speaking, this leads to two possible approaches
• Run N independent ULA chains and sample points at a fixed time T.
• Run a ULA chain over a long time horizon and sample at each step.

The latter strategy is much preferred by practitioners, but relies on the
Markov chain to have a fast mixing time.
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However, ULA is a Markov chain and might not explore the space quickly.

Broadly speaking, this leads to two possible approaches
• Run N independent ULA chains and sample points at a fixed time T.
• Run a ULA chain over a long time horizon and sample at each step.

The latter strategy is much preferred by practitioners, but relies on the
Markov chain to have a fast mixing time.

Motivating questions

Can Langevin dynamics be simulated as a cloud of (dependent) points?

Accuracy? Computational cost? Exploration of parameter space?
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One-step cubature formula
Recall the Langevin diffusion with invariant measure π ∝ e− f is given by

dyt = −∇f(yt)dt+
√
2dWt , (1)

By Taylor expanding (1), we can see that y has the following moments:

E
[
(yt − ys) | ys

]
= −∇f(ys)h+ O(h2), (2)

E
[
(yt − ys)⊗2 | ys

]
= 2hId + O(h2), (3)

for s, t ≥ 0, where h = t− s > 0.

Construction of a first order one-step cubature rule started at ys
We want to construct a cloud of points and weights {(xi ,wi)}1≤i≤N with

µ :=

N∑
i=1

wixi = −∇f(ys)h, Σ :=

N∑
i=1

wi(xi − µ)(xi − µ)T = 2hId .
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One-step cubature formula via Hadamard matrices
The Hadamard (or Walsh) matrices are defined inductively as

H1 :=
(
1
)
, H2k+1 :=

(
H2k H2k

H2k −H2k

)
.

Let n := 2⌈ log d⌉ and define n vectors {ei}1≤ i≤n in Rd as columns of Hn

Hn =

(
e1 e2 · · · en−1 en

(n− d)× n matrix

)
,

and another vectors {ei}n+1≤ i≤2n as ei := −ei−n for n+ 1 ≤ i ≤ 2n.

Theorem (Victoir (2005))
Let X ∼ Uniform

(
{ei}1≤ i≤2n

)
. Then X is a symmetric random vector with

covariance matrix:
E
[
X⊗2

]
= Id .

Thus, X matches the first 3 moments of the standard normal distribution.
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One-step cubature formula via Hadamard matrices

H2 H4 H8
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One-step cubature formula via Hadamard matrices

Therefore, in each step, we define 2⌈ log d⌉+1 new cubature particles as

y newi := ys −∇f(ys)h+
√
2hei , (4)

each with equal weight. The moments of (4) will then have O(h2) error.
Equation (4) is a particular example of “Cubature on Weiner Space” [4].
However, even in the one-dimensional setting, there is a clear problem!
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Equation (4) is a particular example of “Cubature on Weiner Space” [4].
However, even in the one-dimensional setting, there is a clear problem!

 

After each step, the number of particles increases by a factor of ≈ 2d.
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Distribution compression
Thus, for SDE cubature to be practical, we require an algorithm that can
“compress” (or reduce the support of) discrete probability distributions.
In addition to just resampling particles, there are a variety of algorithms
where the compressed measure accurately integrates certain functions.
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Distribution compression
Thus, for SDE cubature to be practical, we require an algorithm that can
“compress” (or reduce the support of) discrete probability distributions.
In addition to just resampling particles, there are a variety of algorithms
where the compressed measure accurately integrates certain functions.

Test functions are explicitly specified by the user (e.g. polynomials)

• High order Recombination (Litterer and Lyons (2012),
Tchernychova and Lyons (2016), Cosentino et al. (2020))

Test functions come from a reproducing kernel (i.e. MMD distance)

• Kernel Herding (Chen et al. (2010))
• Kernel Thinning (Dwivedi and Mackey, (2021))
• Kernel Recombination (Hayakawa et al. (2022, 2023))
• Stein Thinning (Riabiz et al. (2022))
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Distribution compression

Example of Stein Thinning [14], which is designed to thin MCMC samples
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Applying distribution compression locally

 

 

 

 

 

 

 

 

A standard ball tree algorithm for partitioning points is implemented in

from sklearn.neighbors import BallTree
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A basic cubature algorithm
Step 0. Generate a cloud of N points Y0 with uniform weights w0 =

1
N

from a prior distribution.

Step 1. In each step, generate a new cloud of 21+⌈ log d⌉N points by

Yn+1 , i := Yn −∇f(Yn)h+
√
2hei ,

with weights wn+1 , i := 2−(1+⌈ log d⌉)wn .

The vectors {ei} come from the “Hadamard” cubature formula.

Step 2. Put the points into N smaller “patches” via a ball tree algorithm.

Step 3. On each patch, resample a point (or reduce small clouds of
points/weights using a distribution compression algorithm).

Step 4. Repeat steps 1 – 3.
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Error analysis of cubature

We want to compare n steps of Langevin cubature to the SDE at T = nh.

 

0 T 

Langevin cubature 

Langevin diffusion 

= 
= 
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Error analysis of cubature

For a smooth test function F : Rd → R, let

Pt F : y 7→ E
[
F(yt)| y0 = y

]
,

Qk F : Y 7→ E
[
F(Yk)|Y0 = Y

]
,

be the semigroups associated with the Langevin diffusion and cubature
(Yk is ULA with Hadamard random vectors). By a telescoping sum trick,

PT F− Qn F =

n−1∑
k=0

Qn−(k+1)

(
Ptk+1

F
)
− QN−k

(
Ptk F

)
=

n−1∑
k=0

Qn−(k+1)

(
Ph − Q1

)(
Ptk F

)
,

where the cubature algorithm uses a step size of h > 0 and tk := kh.
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Error analysis of cubature

Since Q1 is a Markov operator, it follows from [15, Theorem 13.2] that∥∥PT F− Qn F
∥∥
L2µ

≤
n−1∑
k=0

∥∥Qn−(k+1)

(
Ph − Q1

)(
Ptk F

)∥∥
L2µ

=

n−1∑
k=0

∥∥Q1 · · ·Q1︸ ︷︷ ︸
n−(k+1)
times

(
Ph − Q1

)(
Ptk F

)∥∥
L2µ

≤
n−1∑
k=0

∥∥(Ph − Q1

)(
Ptk F

)∥∥
L2µ
,

where µ is the prior distribution (that is, y0 ∼ µ) and ‖ · ‖L2µ is the norm

‖G‖L2µ :=

(∫
Rd

‖G(x)‖2 dµ(x)
) 1

2

.

James Foster (Bath and DataSıg) Markov Chain Cubature for Inference 14 April 2023 14 / 24



Error analysis of cubature

Since Q1 is a Markov operator, it follows from [15, Theorem 13.2] that∥∥PT F− Qn F
∥∥
L2µ

≤
n−1∑
k=0

∥∥Qn−(k+1)

(
Ph − Q1

)(
Ptk F

)∥∥
L2µ

=

n−1∑
k=0

∥∥Q1 · · ·Q1︸ ︷︷ ︸
n−(k+1)
times

(
Ph − Q1

)(
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≤
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k=0

∥∥(Ph − Q1

)(
Ptk F

)∥∥
L2µ
,

where µ is the prior distribution (that is, y0 ∼ µ) and ‖ · ‖L2µ is the norm

‖G‖L2µ :=

(∫
Rd

‖G(x)‖2 dµ(x)
) 1

2

.

Hence, there are two different operators to estimate: (Ph −Q1) and Ptk .
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Error analysis of cubature (based on Talay-Tubaro [16])

Using the notation Ft := PtF, we can Taylor expand (Ph−Q1)(PtF) since

E
[
Ft(yh)|y0 = y

]
= Ft(y) +

(
∆Ft(y)−∇Ft(y)∇f(y)

)
h+ R1(t, y)h2 ,

E
[
Ft(Y1)|Y0 = y

]
= Ft(y) +

(
∆Ft(y)−∇Ft(y)∇f(y)

)
h+ R2(t, y)h2,

where each remainder Ri(t, y) can bounded by a function of the form
C(1 + ‖y‖m)e−αt, due to some classical SDE theory [1, 17].
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(
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)
h+ R2(t, y)h2,

where each remainder Ri(t, y) can bounded by a function of the form
C(1 + ‖y‖m)e−αt, due to some classical SDE theory [1, 17]. Therefore

Ey0∼µ

[∥∥(PT F− Qn F
)
(y0)

∥∥2] 1
2 ≤

n−1∑
k=0

Ey0∼µ

[(
C(1 + ‖y0‖m)e−αtk

)2] 1
2 h2

≤
n−1∑
k=0

C̃h2e−αtk

≤ C̃
( 1
α
+ h
)
h.
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)
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∥∥2] 1
2 ≤
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Ey0∼µ

[(
C(1 + ‖y0‖m)e−αtk
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2 h2

≤
n−1∑
k=0

C̃h2e−αtk

≤ C̃
( 1
α
+ h
)
h. O(h) error for all n ≥ 1
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Error analysis of cubature (based on Talay-Tubaro [16])

Classical SDE Theory ([1, Prop 4.2], [17, Prop 3.1 and Thm 3.4])
Suppose f is a confining potential (lim|x|→∞ f(x) = ∞ and

∫
Rd e

−βf(x)dx < ∞ for β > 0),
∇f is smooth with bounded derivatives and ∃c > 0 such that ⟨x,∇f(x)⟩ ≥ c∥x∥2. Then

• Form ≥ 1, there exists constants Cm , αm > 0 such that for all y0 ∈ Rd and t ≥ 0,

E
[
∥yt∥m

]
≤ Cm

(
1 + ∥y0∥me−αmt). (5)

• Suppose F ∈ C∞(Rd) and its derivatives have at most polynomial growth at ∞ .
Define u(t, y) := E

[
F(yt)|y0 = y

]
. Then for any given multi-index I = (i1 , · · · , ik),

there exists CI , αI > 0 and a positive integer mI such that for y ∈ Rd and t ≥ 0,∣∣∣∣ ∂ |i|

∂ i1y1 · · · ∂ iny ik
(
u(t, y)

)∣∣∣∣ ≤ CI
(
1 + ∥y∥mI

)
e−αIt. (6)

In addition, there exists C, α > 0 and m ≥ 1 such that for all y ∈ Rd and t ≥ 0,∣∣∣u(t, y)− Ex∼π

[
F(x)

]∣∣∣ ≤ C
(
1 + ∥y∥m

)
e−αt, (7)

where π(x) ∝ e−f(x) is the stationary distribution of the Langevin diffusion {yt}.
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Langevin cubature on a Gaussian mixture model

 

Iter 0; ‖𝜇 − �̂�‖ = 10.036; ‖Σ − Σ̂‖ = 10.019 

 

Iter 25; ‖𝜇 − �̂�‖ = 4.971; ‖Σ − Σ̂‖ = 8.144 

 

Iter 100; ‖𝜇 − �̂�‖ = 3.288; ‖Σ − Σ̂‖ = 3.767 

 

Iter 250; ‖𝜇 − �̂�‖ = 1.590; ‖Σ − Σ̂‖ = 0.640 

 

Iter 500; ‖𝜇 − �̂�‖ = 0.488; ‖Σ − Σ̂‖ = 0.311 

 

Iter 1000; ‖𝜇 − �̂�‖ = 0.016; ‖Σ − Σ̂‖ = 0.227 

 

James Foster (Bath and DataSıg) Markov Chain Cubature for Inference 14 April 2023 17 / 24



Cubature vs MCMC on a Gaussian mixture model

All algorithms were implemented in Python and ran on a laptop
(not in parallel)

Algorithm Time (s) Iterations ‖µ− µ̂‖ (3.d.p)
Langevin cubature 32.9 1000 0.016
Single MCMC chain 362.5 1000000 0.047

(ULA) (+ 1000 burn-in)

Cubature parameters: MCMC parameters:
• Step size, h = 0.1 • Step size, h = 0.1

• Number of particles, N = 1024
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Cubature vs Stein Variational Gradient Descent

Stein Variational Gradient Descent (SVGD), due to Liu & Wang (2016),
is a very popular interacting particle algorithm for Bayesian inference.

Figure: (left) Langevin Cubature. (right) Stein Variational Gradient Descent.
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The variance collapse of SVGD

However, without enough particles, SVGD exhibits “variance collapse”
and behaves similar to gradient-based single particle optimisation [19].

Published as a conference paper at ICLR 2022
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(c) IMQ Kernel (σ = 1).

Figure 4: Stationary variance of SVGD and MMD-descent; predictions (black) are given by Proposition 3 and
5. (a) Gaussian kernel with median heuristic: SVGD underestimates the variance, but MMD-descent (blue) does
not. (b) IMQ-SVGD underestimates the variance under both the median heuristic (red) and fixed σ =

√
d (blue).

(c) When σ = 1, IMQ-SVGD asymptotically collapses the variance to 0 at a rate of d−1/3 (black).

We show that this is unfortunately not the case. We first provide a general characterization:
Proposition 5. Given (A1-4) and fixed bandwidth5 σ =

√
d, the SVGD variance satisfies

f ′(vSVGD) = γ ·
[
f(vSVGD)− f(0)

]
.

In addition, if f ′ is also monotone on R≥0, then vSVGD decreases as γ > 1 increases.

Note that the monotonicity assumption is again satisfied by many Euclidean distance kernels of
interest. While the equation may not provide an explicit expression of the stationary variance, we
can verify that the variance decreases as the problem becomes more high-dimensional (i.e., larger γ).
Our next proposition specifically handles the IMQ kernel considered in Gorham and Mackey (2017).
Corollary 6. Given (A1-4), for the IMQ kernel f(x) = (1 + x)−1/2 with fixed bandwidth, we have
the following stationary variance of SVGD under two different scalings:

• When σ =
√
d, vSVGD < 1 and is decreasing as γ > 1 increases.

• When σ = 1, vSVGD → 0 as n, d→∞ at a rate of d−1/3.

This corollary suggests that the IMQ kernel with fixed bandwidth is not a remedy to the variance
collapse problem. We remark that the second setting (σ = 1) is considered in Gorham and Mackey
(2017) for KSD. In both cases (and including the median bandwidth covered by Proposition 3), SVGD-
IMQ underestimates the target variance as the dimensionality increases (large γ). The agreement
between the theoretical predictions and the empirical simulations (using finite particles) is illustrated
in Figure 4(b)(c). Finally, in Appendix A we include a more general (but less precise) characterization
of variance collapse beyond Gaussian target, as well as additional empirical evidence.

5.3 A MODIFICATION OF SVGD

We have thus far shown that in the simple setting of learning high-dimensional Gaussian, SVGD
underestimates the dimension-averaged variance unless the number of particles is larger than the di-
mensionality. Now we further validate our theoretical findings by introducing a heuristic modification
of SVGD that corrects for this variance collapse in the overparameterized regime6.

The starting observation is that the variance collapse indicates that the deterministic bias causes the
driving force term to dominate. Because during each update every particle xi is most “correlated”
with itself, one should expect S1(xi,xi) to contribute significantly to this bias. We thus consider a
modification of SVGD which simply shrinks (damps) the term S1(xi,xi) by λ = min{1, (f(1)−
γ−1f ′(1))/f(0)}, where λ is chosen such that when d > n, the equilibrium variance matches the
target variance in the setup of Proposition 3. We refer to this update as damped SVGD:

∆Damp(xi) =
∑
j 6=i

[S1(xj ,xi) + S2(xj ,xi)] + λS1(xi,xi). (5)

Remark. At high level, (5) resembles the annealed SVGD algorithm (D’Angelo and Fortuin, 2021),
in that they both ”weaken” the driving force S1. However, annealed SVGD uses a heuristic learning
rate schedule (target-independent) to modify the strength of S1, whereas we derive our λ to ensure
that the dimension-averaged variance is correct under (A1-4) in the d > n regime.

5Note that the fixed bandwidth can be arbitrary, as constants can be absorbed into the function f .
6The modified update in Section 4 also alleviate the variance collapse, but is computationally intractable.

8

Furthermore, SVGD scales quadratically with the number of particles.
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Cubature vs SVGD on Bayesian logistic regression
Forest Covertype dataset [20]: 581,012 data points and 54 features.

Algorithm Iterations Test accuracy Log-likelihood
Langevin Cubature

(with Tamed Euler [21])
1500 75.9% -0.564

Stein Variational
Gradient Descent

6000 75.7% -0.521

Langevin Cubature ran for 10.7 hours whereas SVGD ran for 7.1 hours.
SVGD has similar test accuracy, but is much faster with fewer particles!

Cubature parameters: SVGD parameters:
• Step size, h = 0.01 • Step size, h = 0.05

• Particles, N = 8192 • Particles, N = 8192

• RBF kernel, σ2 = med2/ logN

Both algorithms use the same prior distribution and a batch size of 100.
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Conclusion and ongoing work
Conclusion
• Cubature is a way of solving SDEs as a cloud of (dependent) particles.
• Langevin cubature can outperform MCMC on a 2D Gaussian mixture
and also perform well on a non-toy example, but is currently too slow.

• Unlike SVGD, it can avoid O(N2) complexity in the number of particles.
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Conclusion
• Cubature is a way of solving SDEs as a cloud of (dependent) particles.
• Langevin cubature can outperform MCMC on a 2D Gaussian mixture
and also perform well on a non-toy example, but is currently too slow.

• Unlike SVGD, it can avoid O(N2) complexity in the number of particles.

Ongoing work • Easy-to-use GPU-capable JAX implementation

(currently being
developed by
Thomas Coxon)

• Error analysis for
Langevin cubature
with compression
(my work)
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Thank you
for your attention!
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