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Motivation

Solving sparse linear systems is omnipresent in scientific computing.
Ax = b.

A € K™ very large, sparse, and ill conditioned.
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Motivation

Solving sparse linear systems is omnipresent in scientific computing.
Ax = b.

A € K"*" very large, sparse, and ill conditioned.
Important aspects required by users:

» Effectiveness: need a solution with a desired accuracy
Efficiency: need it as fast as possible
Scalability: more computing resources yields faster solver
Black box: prefer non-intrusive solvers. Only provide A and b

Easy setup: Few knowledge on linear solvers. Not worry how
to set it up perfectly. As minimal parameters as possible.
(Type: Hermitian, saddle-point, etc; Accuracy; Max iter)
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Overlapping DD

Solve the Poisson equation in Q
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Solve the Poisson equation in Q
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Overlapping DD

Solve the Poisson equation in Q

R (RIAR] )R+ RS (R AR ) 1Ry

Iterate updating the solution values.
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Overlapping DD

Figure: Semistructured mesh decomposed into 32 overlapping subdomains
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Ingredients: Overlapping Subdomain

The sparsity graph of A has n nodes.
N non-overlapping sudbomains {Q/;}1<j<n: N disjoint subsets of
Q = [[1, nﬂ. ny = #Q/i
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Ingredients: Overlapping Subdomain

The sparsity graph of A has n nodes.

N non-overlapping sudbomains {Q/;}1<j<n: N disjoint subsets of
Q= [[1, nﬂ. ny = #Q/i

The connections in the graph define the overlapping subdomain:
If ke Q. Jj Qé Qi and A(k,j) # 0 then j € Qr;.

ail am
ar axp a
A— |92 32 ax N—2
a2 a3 axy
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Ingredients: Overlapping Subdomain

The sparsity graph of A has n nodes.

N non-overlapping sudbomains {Q/;}1<j<n: N disjoint subsets of
Q= [[1, n]]. ny = #Q/i

The connections in the graph define the overlapping subdomain:
If ke Q. Jj Qé Qi and A(k,j) # 0 then j € Qr;.

ail ar
ax axp a
A— |92 a2 axs N—2
a3z a3 axy

> Q1 =1{1,2} Qpp={3,4}
> Qr1 = {3}, Qr2 = {2}

Science and
Technology
Facilities Council



Ingredients: Restriction and Partition of Unity

Restriction to subset nodes:
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Ingredients: Restriction and Partition of Unity

Restriction to subset nodes:
» Rji = 1,(£y;,:): to nonoverlapping nodes
» Rri = In(Qr;,:): to interface nodes
» R; = [Ryi; Rri]: to overlapping sudomain nodes
> R.: to the rest
Partition of unity: D;: diagonal 1 if € Q; and 0 if € Qr;

N
> RIDiR; = I,
i=1
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Ingredients: Restriction and Partition of Unity

ajl  a
a a a
A— |91 a2 a3 N=—2
azy asz as;

> Q= {1,2} Qo = {374}
> er = {3}, QFZ = {2}
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Ingredients: Restriction and Partition of Unity

a11  a12
a a a
A= 21 422 a3 N =2
432 433 das4
43 44

> Q= {1,2} Qo = {374}
> Qr1 = {3}, Qr2 = {2}

> Ry =1([12],:), Rr1 = 1(3,:), Ry = I([1 2 3],2)
> R[2 = /([3 4], :), Rr2 = /(2, Z), R2 = /([3 4 2], Z)
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Ingredients: Restriction and Partition of Unity

a11  a12
a a a
A= 21 422 a3 N =2
432 433 das4
43 44

> Qll = {1,2} Q[2 = {3,4}

> Or = {3}, Qrr = {2}

> Riu=1([12],:), Rri=1(3,:), R = I([L 2 3],")
> R[2 :/([3 4],:), Rrgz /(2,3), R2: /([342],3)

Dy
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Ingredients: Local Problems

Aii = RIAR/.
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Ingredients: Local Problems

Aii = RIAR/.

a1l a12
a1 a2 as N =2
d32 a3z ass
43  a44

> Rll - /([]_ 2], Z), er - 1(3, Z), Rl - I([l 2 3], Z)
> R[2 - /([3 4], Z), Rr2 - I(27 Z), R2 - I([3 4 2], Z)
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Ingredients: Local Problems

Aii = RiART .
dil  4a12
a a a
A= 21 22 23 N = 2.
d32 433 d34
d43 44

> Rll - /([]_ 2], Z), er - 1(3, Z), Rl - I([l 2 3], Z)
> R[2 - /([3 4], Z), Rr2 - I(27 Z), R2 - I([3 4 2], Z)

air an
A1 = |ax ax ax
ax  ass
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Ingredients: Local Problems

Aii = RIART .
a1 a12
a ajyy az
A= | : . N=2.
d32 a3z ass
443  d44

> Riy=1([12],2), Rri=1(3,:), Ru=I([123],)
> R =1([34],:), Rra = 1(2,:), Ro = I([3 4 2].)

dil  a12
A1 = |axn ax» ax
a3  as3
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Ingredients: Local Problems

Aii = RiART .
a11  a12
a a a
A— 21 d22 a3 N =2
d32 d33 4as4
43 44

> Rll - /([]_ 2], Z), er - 1(3, Z), Rl - I([l 2 3], Z)
> R[2 - /([3 4], Z), Rr2 - I(27 Z), R2 - I([3 4 2], Z)

ail awp a3 a3 ap
A1 = |ax ax ax Axp = | as3 ass
d32 433 ar3 a2

Science and
Technology
Facilities Council



Define P; = I([Ryi, Rri, Rail, ).

Alili
PAP = | Arii
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0-Overlap

Through the sparsity graph, define Qr, ;i Define
Pi = I([Riis Rry.s_yis Rrsis Reil, 1),

Ali li AliFrs i
papT — | Arisaidi Aris aifis ai Arvs 1ilsi
, —
' Arsilis i Arsirsi Arsici

Acilsi Acici
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0-Overlap

Through the sparsity graph, define Qr, ;i Define
Pi = I([Riis Rry.s_yis Rrsis Reil, 1),

Ali li AliFrs i
papT — | Arisaidi Aris aifis ai Arvs 1ilsi
, —
' Arsilis i Arsirsi Arsici

Acilsi Acici

Ri = [Rii, Rry.s 1is Rrsil-
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One-Level Schwarz

Four stages:
1. Restrict
2. Solve locally
3. Augment
4. Update
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N
=> RTA;'R:.
i=1
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One-Level Schwarz Not Scalable

N
Mt =Y RTA'R.
i=1

N|2 4 8 16 32 64
It |42 53 66 74 84 97

Table: 2D Poisson on 300x300 mesh. Metis partitioning.
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One-Level Schwarz Not Scalable

N
Mt =Y RTA'R.
i=1

N|2 4 8 16 32 64
It |42 53 66 74 84 97

Table: 2D Poisson on 300x300 mesh. Metis partitioning.

Iteration count = f(N). Not scalable
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One-Level Schwarz Not Scalable

N
Mt =Y RTA'R.
i=1

N|2 4 8 16 32 64
It |42 53 66 74 84 07

Table: 2D Poisson on 300x300 mesh. Metis partitioning.

Iteration count = f(N). Not scalable
Need a second level (coarse space correction) to maintain
robustness

N
Myt = R A Ro+ > RTAR;,
i=1

e where Agy = RoAR!

13



Adaptive Coarse Spaces (for Overlapping Schwarz) |

PDE
>

>

based (Two-level)

A coarse space construction based on local Dirichlet-to-Neumann maps
[Nataf et al., 2011]

Abstract robust coarse spaces for systems of PDEs via generalized
eigenproblems in the overlaps [Spillane et al., 2014]

SHEM: an optimal coarse space for RAS and Its multiscale approximation
[Gander and Loneland, 2017]

Adaptive GDSW coarse spaces of reduced dimension for overlapping
Schwarz methods [Heinlein et al., 2020]

A multilevel Schwarz preconditioner based on a hierarchy of robust coarse
spaces [Al Daas et al., 2021]

A comparison of coarse spaces for Helmholtz problems in the high
frequency regime [Bootland et al., 2021]

Multilevel spectral domain decomposition [Bastian et al., 2022]

A fully algebraic and robust two-level Schwarz method based on optimal
local approximation spaces [Heinlein and Smetana, 2022]

Science
Technology

Facilities Council
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Adaptive Coarse Spaces (for Overlapping Schwarz) I

Fully Algebraic

» A class of efficient locally constructed preconditioners based on coarse
spaces [Al Daas and Grigori, 2019]

» Fully algebraic domain decomposition preconditioners with adaptive
spectral bounds [Gouarin and Spillane, 2021]

» A Robust Algebraic Domain Decomposition Preconditioner for Sparse
Normal Equations [Al Daas et al., 2022b]

» A robust algebraic multilevel domain decomposition preconditioner for
sparse symmetric positive definite matrices [Al Daas and Jolivet, 2022]

» Efficient algebraic two-level Schwarz preconditioner for sparse matrices
[Al Daas et al., 2022a]
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Interface-to-Interior Operator

P; = I([Riis Rry.s_yis Rrsis Reil, ),

Ali li Al
p.APT = | Aruomaidi Alvs il
1

Ms—1i

A5l i
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Interface-to-Interior Operator

P; = I([Riis Rry.s_yis Rrsis Reil, ),

Alili Alils i
p.apT = | Arvomaidi Alusilgai Alisaifsi
! Arsilis i Arsifsi Arsici

Acirsi Acici

Consider T; : xsi € Qr;i — xji € §y;, the restriction of the
corresponding local solution.

Al li Alirys 1i Xji 0
Arys_aihi ATys iTys_ai ATys_qifsi | | Xrsai | = | 0
/ Xsi Xsi
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Interface-to-Interior Operator

P; = I([Riis Rry.s_yis Rrsis Reil, ),

Aji i Aji

’ 7r1:5—1i
p.apT = | Arvomaidi Alusilgai Alisaifsi
' Arsifis 1i Arsilsi Argici
ol 1:6—1 sl e ol

A i AliFys i
TI(X6I) — XII — 1,1 Lh1.5—11
Al aisli ATys 1iTys i
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Theorem

To be submitted [HAD, Jolivet, Nataf, Tournier]

Theorem
Set RY =[R2y, ..., RinZn], where Z; = Im(T;)

N
My' = R§'Agg Ro+ > RTAT'R:.
i=1
If A is HPD:
K (MytA) = C

C depends only on the largest number of neighbouring overlapping
subdomains
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SVD Interface-to-Interior Operator

1 layers
2layers
3layers
4layers
5layers
6 layers
7 layers
8layers
9layers
10 layers
11 layers
——— 12layers
13 layers

14 layers
—— 151ayers
16 layers
17 layers
—— 18layers
——— 191ayers
20 layers

" k“\ |

102 L L L L L L L L L
0

10710

Figure: N = 32. Subdomain 1. Singular values of the interface-to-interior
operator for a Poisson equation.
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SVD Interface-to-Interior Operator

1 layers
2 layers
3layers
4layers
5 layers
6 layers
7 layers
8 layers
9 layers
10 layers
11 layers
12 layers
13 layers
14 layers |-
15 layers
16 layers

10° -

20layers
10710

1015

0 50 100 150 200 250 300

Figure: N = 32. Subdomain 1. Singular values of the interface-to-interior
operator for the matrix AT A, where A is the Ruccil matrix (SSMC).
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Theorem

To be submitted [HAD, Jolivet, Nataf, Tournier]

Theorem
Set RY = [Rnzi, ..., RinZn], where Z; = tSVD(Im(T;),€)

N
My' = R§'Ag Ro+ > RTAT'R:.
i=1

If A is HPD:
K (My'A) = C (14K (M 'A) €)

C depends only on the largest number of neighbouring overlapping
subdomains
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Numerical experiments

N 4 8 16 32
Diffusion 14 (160) 12 (320) 11 (640) 8 (1280)
Adv-Diff 14 (160) 13 (320) 14 (640) 12 (1280)
Stokes 47 (320) 42 (640) 43 (1280) 49 (2559)
Biharmonic 51 (240) 55 (480) 34 (960) 22 (1920)
Elasticity ~ 50 (320) 37 (640) 36 (1267) 28 (2529)

Table: Strong scaling on variety of problems
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Numerical experiments

N 8 32

Diffusion 10 (160) 13 (640)
Adv-Diff 12 (160) 13 (640)
Stokes 32 (614) 49 (2555)
Biharmonic 11 (639) 15 (2560)
Elasticity 18 (554) 28 (2529)

Table: Weak scaling on variety of problems
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Nornal Equations

[HAD, Jolivet, Scott. SISC 22']

Theorem
For a sparse A with A= B"B, or A= B"diag(g)B, g > 0

k(My'A)=C(1+7)

where T > 0 is a user-specified.
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PDE-CO

Solve
myin ly = 9lI&, + Bllullg, subject to Ly = uin Q

The resulting matrix

M K*
B8R L*
K L

Mass lumping yields an equivalent diagonal matrix W' to the
(1:2,1:2)-block. S = J*J, where J* = [KL]W /2.

Science and
Technology
Facilities Council
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Poisson PDE-CO

IFISS: Grid 28 x 28, 8 = 0.01, Q,-FE, matrix length ~ 200K.

0,
10
== Cheb-Mass-10-Schur-approx-2-AMG-2V-Jac-2steps-pre-post
> == Two-Level Schur--Schwarz

102F

104

10-6 L
—N
E -
- -

108 A

\
-
-10 [ -
10 -
K \
1072 ~
N
10-14 1 1 1 1 1 |
0 10 20 30 40 50 60
Iteration

Science and Figure: Residual history
Technology

Facilities Council
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Helmholtz PDE-CO

Test case inspired by Kouri et al. 21’
Grid 160 x 160, 8 = 107°, P1-FE, matrix length ~ 50K.

Figure: State (real part): Desired (left), solution (right)
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Technology
Facilities Council

26



Helmholtz PDE-CO

Test case inspired by Kouri et al. 21’
Grid 160 x 160, 8 = 107, P1-FE, matrix length ~ 50K.

JsoValue Jlso\alue

Ei Bl

2 i

Figure: 3D view of the state (real part)
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Helmholtz PDE-CO

Test case inspired by Kouri et al. 21’
Grid 160 x 160, 8 = 107>, P;-FE, matrix length ~ 50K.

Figure: Control (real part)
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Helmholtz PDE-CO

Test case inspired by Kouri et al. 21’

Grid 160 x 160, 8 = 1072, P;-FE, matrix length ~ 50K.

10°

== One-Level Schur--Schwarz
=== Two-Level Schur--Schwarz

-~

10-8 L

10710 . . . . . )
0 20 40 60 80 100 120
Iteration

Figure: Residual history
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Diagonally Dominant HPD

[HAD, Jolivet, Rees. SISC 23’

Theorem
For a sparse A HPD

k(MytA) = C(1+7)

where T > 0 is a user-specified.

Science and
Technology
Facilities Council
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Highly Non Symmetric

V- (Vu) —vV - (kVu)=0in Q

(aj Mesh (b) v =107
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u=0onTy

u=1onTl;

(c)v=10"
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Highly Non Symmetric

V- (Vu) —vV - (kVu)=0in Q

u=0onTy

u=1onTl;

(c)v=10"
. . v
Prec Dimension | k N n 1 101 10-2 10-3 104

Ml 2 1]1,024]6.3-10°] 23 (52,875) 20 (s2.872) 19 (s2,759) 20 (ar.a07) 21 (28.235)
2 3 2| 4,096 | 8.1-10° | 18 @s-10 14 18.10°) 11 6-105 16 (o7.657) 29 (76.853)

2 11,024 | 6.3-10° 42 48 88 1 1

GAMG ) 3 2 | 4,006 | 8.1-10° 40 38 65 t t

Teahnolagy. 11,024 ]6.3-10° 50 49 19 7 t

;TCW"“'s 2 | 4,006 | 8.1-10° 12 9 7 t t

28



Summary & Perspectives

Summary:

» Algebraic DD provides a simple way to construct

preconditioners that are effective, efficient, black-box and easy
to set up

» Provable: Diagonally weighted normal equations matrix
(Schur complement); HPD; Diagonally dominant HPD

» All preconditioner are accessible in PETSc PCHPDDM
Perspectives:
» Extension to general Schur complement B G1B

» Extend theory to non-Hermitian matrices

Science and
Technology
Facilities Council
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Thank you for your attention!
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V- (Vu) —vV - (kVu)=0in Q

u=0onlg u=1lonl;

x(1—=x)(2y = 1) ) or  V(x,y,z) =

Viay) = (—yu —y)x—1)
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—y(l —y)(2x —1)

2x(1 — x)(2y — 1)z >
12 2)@2x ~ 1)@y —1))

30



Two to multi-level [H.A., P.J., L.G.,P.-H.T. SISC
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Two to multi-level [H.A., P.J., L.G.,P.-H.T. SISC
'21]

A = RoARY!
N ~

ul ZA,‘U < kmuHAu
i=1

(Rov)S ™ Ai(Rov) < km(Rov)" A(Rov)

HMZ

N
VIS (REA R < kM (RY ARy )V = kv Agov
i=1
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Two to multi-level [H.A., P.J., L.G.,P.-H.T. SISC
'21]

A = RoARY!
N ~

ul ZA,‘U < kmuHAu
i=1

(Rov)S ™ Ai(Rov) < km(Rov)" A(Rov)

HMZ

N
VIS (REA R < kM (RY ARy )V = kv Agov
i=1

Vi Z DS (REARs) | v < k(R ARGV = kv Agov
j=1 i€G;j

Science and
Technology A
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GenEO FEM [Dolean et al '15]

a(u,v) = Z/uv—>A

KeT

a(u,v) Z/uv%A

KeTi
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Technology
Facilities Council
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