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Motivation

Solving sparse linear systems is omnipresent in scientific computing.

Ax = b.

A ∈ Kn×n very large, sparse, and ill conditioned.

Important aspects required by users:

▶ Effectiveness: need a solution with a desired accuracy

▶ Efficiency: need it as fast as possible

▶ Scalability: more computing resources yields faster solver

▶ Black box: prefer non-intrusive solvers. Only provide A and b

▶ Easy setup: Few knowledge on linear solvers. Not worry how
to set it up perfectly. As minimal parameters as possible.
(Type: Hermitian, saddle-point, etc; Accuracy; Max iter)
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Overlapping DD

Solve the Poisson equation in Ω

Ω
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R1AR
T
1 x = R1b
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Overlapping DD

Solve the Poisson equation in Ω

Ω Ω1 Ω2

R2AR
T
2 x = R2b
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Overlapping DD

Solve the Poisson equation in Ω

Ω Ω1 Ω2

RT
1 (R1AR

T
1 )−1R1+RT

2 (R2AR
T
2 )−1R2

Iterate updating the solution values.
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Overlapping DD

Figure: Semistructured mesh decomposed into 32 overlapping subdomains
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Ingredients: Overlapping Subdomain

The sparsity graph of A has n nodes.
N non-overlapping sudbomains {ΩIi}1≤i≤N : N disjoint subsets of
Ω = J1, nK. nIi = #ΩIi

The connections in the graph define the overlapping subdomain:
If k ∈ ΩIi , j /∈ ΩIi and A(k, j) ̸= 0 then j ∈ ΩΓi .

A =


a11 a12
a21 a22 a23

a32 a33 a34
a43 a44

 , N = 2.

▶ ΩI1 = {1, 2} ΩI2 = {3, 4}
▶ ΩΓ1 = {3}, ΩΓ2 = {2}
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Ingredients: Restriction and Partition of Unity

Restriction to subset nodes:

▶ RIi = In(ΩIi , :): to nonoverlapping nodes

▶ RΓi = In(ΩΓi , :): to interface nodes

▶ Ri = [RIi ;RΓi ]: to overlapping sudomain nodes

▶ Rci : to the rest

Partition of unity: Di : diagonal 1 if ∈ ΩIi and 0 if ∈ ΩΓi

N∑
i=1

RT
i DiRi = In
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Ingredients: Restriction and Partition of Unity

A =


a11 a12
a21 a22 a23

a32 a33 a34
a43 a44

 , N = 2.

▶ ΩI1 = {1, 2} ΩI2 = {3, 4}
▶ ΩΓ1 = {3}, ΩΓ2 = {2}

▶ RI1 = I ([1 2], :), RΓ1 = I (3, :), R1 = I ([1 2 3], :)

▶ RI2 = I ([3 4], :), RΓ2 = I (2, :), R2 = I ([3 4 2], :)

D1 =

1
1

0

 D2 =

1
1

0



8



Ingredients: Restriction and Partition of Unity

A =


a11 a12
a21 a22 a23

a32 a33 a34
a43 a44

 , N = 2.

▶ ΩI1 = {1, 2} ΩI2 = {3, 4}
▶ ΩΓ1 = {3}, ΩΓ2 = {2}
▶ RI1 = I ([1 2], :), RΓ1 = I (3, :), R1 = I ([1 2 3], :)

▶ RI2 = I ([3 4], :), RΓ2 = I (2, :), R2 = I ([3 4 2], :)

D1 =

1
1

0

 D2 =

1
1

0



8



Ingredients: Restriction and Partition of Unity

A =


a11 a12
a21 a22 a23

a32 a33 a34
a43 a44

 , N = 2.

▶ ΩI1 = {1, 2} ΩI2 = {3, 4}
▶ ΩΓ1 = {3}, ΩΓ2 = {2}
▶ RI1 = I ([1 2], :), RΓ1 = I (3, :), R1 = I ([1 2 3], :)

▶ RI2 = I ([3 4], :), RΓ2 = I (2, :), R2 = I ([3 4 2], :)

D1 =

1
1

0

 D2 =

1
1

0


8



Ingredients: Local Problems

Aii = RiAR
T
i .

A =


a11 a12
a21 a22 a23

a32 a33 a34
a43 a44

 , N = 2.

▶ RI1 = I ([1 2], :), RΓ1 = I (3, :), R1 = I ([1 2 3], :)

▶ RI2 = I ([3 4], :), RΓ2 = I (2, :), R2 = I ([3 4 2], :)

A11 =

a11 a12
a21 a22 a23

a32 a33


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Ingredients: Local Problems

Aii = RiAR
T
i .

A =


a11 a12
a21 a22 a23

a32 a33 a34
a43 a44

 , N = 2.

▶ RI1 = I ([1 2], :), RΓ1 = I (3, :), R1 = I ([1 2 3], :)

▶ RI2 = I ([3 4], :), RΓ2 = I (2, :), R2 = I ([3 4 2], :)

A11 =

a11 a12
a21 a22 a23

a32 a33

 A22 =

a33 a34 a32
a43 a44
a23 a22


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Define Pi = I ([RIi ,RΓi ,Rci ], :),

PiAP
⊤
i =

AIi ,Ii AIi ,Γi

AΓi ,Ii AΓi ,Γi AΓi ,ci

Aci ,Γi Aci ,ci


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δ-Overlap

Through the sparsity graph, define ΩΓ1:δ i Define
Pi = I ([RIi ,RΓ1:δ−1i ,RΓδ i ,Rci ], :),

PiAP
⊤
i =


AIi ,Ii AIi ,Γ1:δ−1i

AΓ1:δ−1i ,Ii AΓ1:δ−1i ,Γ1:δ−1i AΓ1:δ−1i ,Γδ i

AΓδ i ,Γ1:δ−1i AΓδ i ,Γδ i AΓδ i ,ci

Aci ,Γδ i Aci ,ci



Ri = [RIi ,RΓ1:δ−1i ,RΓδ i ].
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One-Level Schwarz

Four stages:

1. Restrict

2. Solve locally

3. Augment

4. Update

M−1
1 =

N∑
i=1

RT
i A−1

ii Ri .
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One-Level Schwarz Not Scalable

M−1
1 =

N∑
i=1

RT
i A−1

ii Ri .

N 2 4 8 16 32 64

It 42 53 66 74 84 97

Table: 2D Poisson on 300×300 mesh. Metis partitioning.

Iteration count = f (N). Not scalable
Need a second level (coarse space correction) to maintain
robustness

M−1
2 = RH

0 A−1
00 R0 +

N∑
i=1

RT
i A−1

ii Ri ,

where A00 = R0AR
H
0
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Adaptive Coarse Spaces (for Overlapping Schwarz) I

PDE based (Two-level)
▶ A coarse space construction based on local Dirichlet-to-Neumann maps

[Nataf et al., 2011]

▶ Abstract robust coarse spaces for systems of PDEs via generalized
eigenproblems in the overlaps [Spillane et al., 2014]

▶ SHEM: an optimal coarse space for RAS and Its multiscale approximation
[Gander and Loneland, 2017]

▶ Adaptive GDSW coarse spaces of reduced dimension for overlapping
Schwarz methods [Heinlein et al., 2020]

▶ A multilevel Schwarz preconditioner based on a hierarchy of robust coarse
spaces [Al Daas et al., 2021]

▶ A comparison of coarse spaces for Helmholtz problems in the high
frequency regime [Bootland et al., 2021]

▶ Multilevel spectral domain decomposition [Bastian et al., 2022]

▶ A fully algebraic and robust two-level Schwarz method based on optimal
local approximation spaces [Heinlein and Smetana, 2022]
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Adaptive Coarse Spaces (for Overlapping Schwarz) II

Fully Algebraic
▶ A class of efficient locally constructed preconditioners based on coarse

spaces [Al Daas and Grigori, 2019]

▶ Fully algebraic domain decomposition preconditioners with adaptive
spectral bounds [Gouarin and Spillane, 2021]

▶ A Robust Algebraic Domain Decomposition Preconditioner for Sparse
Normal Equations [Al Daas et al., 2022b]

▶ A robust algebraic multilevel domain decomposition preconditioner for
sparse symmetric positive definite matrices [Al Daas and Jolivet, 2022]

▶ Efficient algebraic two-level Schwarz preconditioner for sparse matrices
[Al Daas et al., 2022a]
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Interface-to-Interior Operator

Pi = I ([RIi ,RΓ1:δ−1i ,RΓδ i ,Rci ], :),

PiAP
⊤
i =


AIi ,Ii AIi ,Γ1:δ−1i

AΓ1:δ−1i ,Ii AΓ1:δ−1i ,Γ1:δ−1i AΓ1:δ−1i ,Γδ i

AΓδ i ,Γ1:δ−1i AΓδ i ,Γδ i AΓδ i ,ci

Aci ,Γδ i Aci ,ci


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AΓδ i ,Γ1:δ−1i AΓδ i ,Γδ i AΓδ i ,ci

Aci ,Γδ i Aci ,ci


Consider Ti : xδi ∈ ΩΓδ i 7→ xIi ∈ ΩIi , the restriction of the
corresponding local solution. AIi ,Ii AIi ,Γ1:δ−1i

AΓ1:δ−1i ,Ii AΓ1:δ−1i ,Γ1:δ−1i AΓ1:δ−1i ,Γδ i

I

 xIi
xΓ1:δ−1i

xδi

 =

 0
0
xδi


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Interface-to-Interior Operator
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

Ti (xδi ) = xIi =

((
AIi ,Ii AIi ,Γ1:δ−1i

AΓ1:δ−1i ,Ii AΓ1:δ−1i ,Γ1:δ−1i

)(
0

−AΓ1:δ−1i ,Γδ ixδi

))
Ii
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Theorem

To be submitted [HAD, Jolivet, Nataf, Tournier]

Theorem

Set RH
0 = [RI1Z1, . . . ,RINZN ], where Zi = Im(Ti )

M−1
2 = RH

0 A−1
00 R0 +

N∑
i=1

RT
i A−1

ii Ri .

If A is HPD:
κ
(
M−1

2 A
)
= C

C depends only on the largest number of neighbouring overlapping
subdomains

17



SVD Interface-to-Interior Operator
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Figure: N = 32. Subdomain 1. Singular values of the interface-to-interior
operator for a Poisson equation.
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SVD Interface-to-Interior Operator
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Figure: N = 32. Subdomain 1. Singular values of the interface-to-interior
operator for the matrix ATA, where A is the Rucci1 matrix (SSMC).
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Theorem

To be submitted [HAD, Jolivet, Nataf, Tournier]

Theorem

Set RH
0 = [RI1Z1, . . . ,RINZN ], where Zi = tSVD(Im(Ti ), ε)

M−1
2 = RH

0 A−1
00 R0 +

N∑
i=1

RT
i A−1

ii Ri .

If A is HPD:

κ
(
M−1

2 A
)
= C

(
1 + κ

(
M−1

1 A
)
ε
)

C depends only on the largest number of neighbouring overlapping
subdomains
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Numerical experiments

N 4 8 16 32

Diffusion 14 (160) 12 (320) 11 (640) 8 (1280)

Adv-Diff 14 (160) 13 (320) 14 (640) 12 (1280)

Stokes 47 (320) 42 (640) 43 (1280) 49 (2559)

Biharmonic 51 (240) 55 (480) 34 (960) 22 (1920)

Elasticity 50 (320) 37 (640) 36 (1267) 28 (2529)

Table: Strong scaling on variety of problems
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Numerical experiments

N 8 32

Diffusion 10 (160) 13 (640)

Adv-Diff 12 (160) 13 (640)

Stokes 32 (614) 49 (2555)

Biharmonic 11 (639) 15 (2560)

Elasticity 18 (554) 28 (2529)

Table: Weak scaling on variety of problems
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Nornal Equations

[HAD, Jolivet, Scott. SISC 22’]

Theorem

For a sparse A with A = BHB, or A = BHdiag(g)B, g ≥ 0

κ
(
M−1

2 A
)
= C (1 + τ)

where τ > 0 is a user-specified.
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PDE-CO

Solve

min
y

∥y − ŷ∥2Ω1
+ β∥u∥2Ω2

subject to Ly = u in Ω

The resulting matrix M K ∗

βR L∗

K L


Mass lumping yields an equivalent diagonal matrix W to the
(1:2,1:2)-block. S̃ = J∗J, where J∗ = [KL]W−1/2.
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Poisson PDE-CO
IFISS: Grid 28 × 28, β = 0.01, Q2-FE, matrix length ≈ 200K .
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Figure: Residual history
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Helmholtz PDE-CO

Test case inspired by Kouri et al. 21’
Grid 160× 160, β = 10−5, P1-FE, matrix length ≈ 50K .

Figure: State (real part): Desired (left), solution (right)
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Helmholtz PDE-CO

Test case inspired by Kouri et al. 21’
Grid 160× 160, β = 10−5, P1-FE, matrix length ≈ 50K .

Figure: 3D view of the state (real part)
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Helmholtz PDE-CO

Test case inspired by Kouri et al. 21’
Grid 160× 160, β = 10−5, P1-FE, matrix length ≈ 50K .

Figure: Control (real part)
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Helmholtz PDE-CO

Test case inspired by Kouri et al. 21’
Grid 160× 160, β = 10−5, P1-FE, matrix length ≈ 50K .
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Diagonally Dominant HPD

[HAD, Jolivet, Rees. SISC 23’]

Theorem

For a sparse A HPD

κ
(
M−1

2 A
)
= C (1 + τ)

where τ > 0 is a user-specified.
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Highly Non Symmetric

∇ · (Vu)− ν∇ · (κ∇u) = 0 in Ω u = 0 on Γ0 u = 1 on Γ1

(a) Mesh (b) ν = 10−2
0
0.2
0.4
0.6
0.8
1

u

(c) ν = 10−4

Prec Dimension k N n
ν

1 10−1 10−2 10−3 10−4

M−1
2

2 1 1,024 6.3 · 106 23 (52,875) 20 (52,872) 19 (52,759) 20 (47,497) 21 (28,235)

3 2 4,096 8.1 · 106 18 (1.8 · 105) 14 (1.8 · 105) 11 (1.6 · 105) 16 (97,657) 29 (76,853)

GAMG
2 1 1,024 6.3 · 106 42 48 88 † †
3 2 4,096 8.1 · 106 40 38 65 † †

BoomerAMG
2 1 1,024 6.3 · 106 50 49 19 7 †
3 2 4,096 8.1 · 106 12 9 7 † †
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Summary & Perspectives

Summary:

▶ Algebraic DD provides a simple way to construct
preconditioners that are effective, efficient, black-box and easy
to set up

▶ Provable: Diagonally weighted normal equations matrix
(Schur complement); HPD; Diagonally dominant HPD

▶ All preconditioner are accessible in PETSc PCHPDDM

Perspectives:

▶ Extension to general Schur complement BHG−1B

▶ Extend theory to non-Hermitian matrices

29



Thank you for your attention!
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Heinlein, A. and Smetana, K. (2022).

A fully algebraic and robust two-level schwarz method based on optimal local approximation spaces.

Nataf, F., Xiang, H., Dolean, V., and Spillane, N. (2011).

A coarse space construction based on local Dirichlet-to-Neumann maps.
SIAM Journal on Scientific Computing, 33(4):1623–1642.

Spillane, N., Dolean, V., Hauret, P., Nataf, F., Pechstein, C., and Scheichl, R. (2014).

Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps.
Numerische Mathematik, 126(4):741–770.

30



∇ · (Vu)− ν∇ · (κ∇u) = 0 in Ω u = 0 on Γ0 u = 1 on Γ1

V (x, y) =

(
x(1 − x)(2y − 1)
−y(1 − y)(2x − 1)

)
or V (x, y, z) =

 2x(1 − x)(2y − 1)z
−y(1 − y)(2x − 1)

−z(1 − z)(2x − 1)(2y − 1)

 ,
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Two to multi-level [H.A., P.J., L.G.,P.-H.T. SISC
’21]

A00 = R0AR
H
0

uH
N∑
i=1

Ãiu ≤ kmu
HAu

(R0v)
H

N∑
i=1

Ãi (R0v) ≤ km(R0v)
HA(R0v)

vH
N∑
i=1

(RH
0 ÃiR0)v ≤ kmv

H(RH
0 AR0)v = kmv

HA00v

vH
N2∑
j=1

∑
i∈Gj

(RH
0 ÃiR0)


︸ ︷︷ ︸

Ã00,j

v ≤ kmv
H(RH

0 AR0)v = kmv
HA00v
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GenEO FEM [Dolean et al ’15]

a(u, v) =
∑
K∈T

∫
K

uv → A

ã(u, v) =
∑
K∈Ti

∫
K

uv → Ãi
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